54
Views
4
CrossRef citations to date
0
Altmetric
Review

Scientific worth of polymer and graphene foam-based nanomaterials

Pages 779-800 | Received 05 Sep 2018, Accepted 30 Nov 2018, Published online: 07 Jan 2019

References

  • A. Y. Sham, S. M. Notley. A review of fundamental properties and applications of polymer–graphene hybrid materials. Soft Matter, 2013, 9, 6645–6653.
  • A. Kausar. Exploration on high performance polyamide 1010/polyurethane blends filled with functional graphene nanoplatelet: physical properties and technical application. J. Chin. Adv. Mater. Soc, 2017, 5, 133–147.
  • A. Kausar. Applications of polymer/graphene nanocomposite membranes: a review. Mater. Res. Innov, 2018, 1–12.
  • S. Vinod, C. S. Tiwary, P. A. da Silva Autreto, J. Taha-Tijerina, S. Ozden, A. C. Chipara, R. Vajtai, D. S. Galvao, T. N. Narayanan, P. M. Ajayan. Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers. Nat. Commun, 2014, 5, 4541.
  • S. Vinod, C. S. Tiwary, L. D. Machado, S. Ozden, R. Vajtai, D. S. Galvao, P. M. Ajayan. Synthesis of ultralow density 3D graphene-CNT foams using a two-step method. Nanoscale, 2016, 8, 15857–15863.
  • P. S. Owuor, T. Tsafack, H. Y. Hwang, O. K. Park, S. Ozden, S. Bhowmick, S. A. Syed Amanulla, R. Vajtai, J. Lou, C. S. Tiwary, P. M. Ajayan. Role of atomic layer functionalization in building scalable bottom-up assembly of ultra-low density multifunctional three-dimensional nanostructures. ACS Nano, 2016, 11, 806–813.
  • D. Chakravarty, C. S. Tiwary, L. D. Machado, G. Brunetto, S. Vinod, R. M. Yadav, D. S. Galvao, S. V. Joshi, G. Sundararajan, P. M. Ajayan. Zirconia‐nanoparticle‐reinforced morphology‐engineered graphene‐based foams. Adv. Mater, 2015, 27, 4534–4543.
  • T. Das, S. Prusty. Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng, 2013, 52, 319–331
  • W.-L. Song, M.-S. Cao, M.-M. Lu, S. Bi, C.-Y. Wang, J. Liu. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 2014, 66, 67–76.
  • V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci, 2014, 7, 1564–1596.
  • X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang. Preparation of novel 3D graphene networks for supercapacitor applications. Small, 2011, 7, 3163–3168.
  • H. Huang, J. Zhu, W. Zhang, C. S. Tiwary, J. Zhang, X. Zhang, Q. Jiang, H. He, Y. Wu, W. Huang, P. M. Ajayan. Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem. Mater, 2016, 28, 1737–1745.
  • X. Zhang, J. Zhu, C. S. Tiwary, Z. Ma, H. Huang, J. Zhang, Z. Lu, W. Huang, Y. Wu. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interface, 2016, 8, 10858–10865.
  • H. Huang, L. Ma, C. S. Tiwary, Q. Jiang, K. Yin, W. Zhou, P. M. Ajayan. Worm‐shape Pt nanocrystals grown on nitrogen‐doped low‐defect graphene sheets: highly efficient electrocatalysts for methanol oxidation reaction. Small, 2017, 13, 1603013.
  • H. Huang, G. Ye, S. Yang, H. Fei, C. S. Tiwary, Y. Gong, R. Vajtai, J. M. Tour, X. Wang, P. M. Ajayan. Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. J. Mater. Chem. A, 2015, 3, 19696–19701.
  • A. P. P. Alves, R. Koizumi, A. Samanta, L. D. Machado, A. K. Singh, D. S. Galvao, G. G. Silva, C. S. Tiwary, P. M. Ajayan. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, rGO and polypyrrole with enhanced supercapacitor performance. Nano Energy, 2017, 31, 225–232.
  • D. Chakravarty, C. S. Tiwary, C. F. Woellner, S. Radhakrishnan, S. Vinod, S. Ozden, P. A. da Silva Autreto, S. Bhowmick, S. Asif, S. A. Mani, D. S. Galvao. 3D porous graphene by low-temperature plasma welding for bone implants. Adv. Mater, 2016, 28, 8959–8967.
  • G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9, 11509–11539.
  • A. Idowu, B. Boesl, A. Agarwal. 3D graphene foam-reinforced polymer composites–A review. Carbon. 2018, 135, 52–71.
  • L. Z. Guan, L. Zhao, Y. J. Wan, L. C. Tang. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 2018, 10, 14788–14811.
  • J. R. Jinschek, E. Yucelen, H. A. Calderon, B. Freitag. Quantitative atomic 3-D imaging of single/double sheet graphene structure. Carbon, 2011, 49, 556–562.
  • R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.
  • H. Wang, T. Maiyalagan, X. Wang. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.
  • W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang. Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci, 2010, 35, 52–71.
  • Y. Wang, Z. Li, J. Wang, J. Li, Y. Lin. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol, 2011, 29, 205–212.
  • H. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu. Macroscopic‐scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed, 2012, 51, 5101–5105.
  • X. Gui, A. Cao, J. Wei, H. Li, Y. Jia, Z. Li, L. Fan, K. Wang, H. Zhu, D. Wu. Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano, 2010, 4, 2320–2326.
  • W. Chen, L. Yan. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011, 3, 3132–3137.
  • Z. Xu, C. Gao. Graphene in macroscopic order: liquid crystals and wet-spun fibers. Acc. Chem. Res, 2014, 47, 1267–1276.
  • Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J. A. Lee, M. Kozlov, A. C. Chipara. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun, 2015, 6, 6141.
  • X. Yang, L. Li, S. Shang, T. M. Tao. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer, 2010, 51, 3431–3435.
  • C. Bao, Y. Guo, L. Song, Y. Hu. Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J. Mater. Chem, 2011, 21, 13942–13950.
  • T. Zhou, F. Chen, C. Tang, H. Bai, Q. Zhang, H. Deng, Q. Fu. The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos. Sci. Technol, 2011, 71, 1266–1270.
  • B. Abdulhakeem, B. Farshad, M. Damilola, T. Fatemeh, F. Mopeli, D. Julien, M. Ncholu. Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors. RSC Adv, 2014, 4, 39066–39072.
  • A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh, M. Fabiane, N. Manyala. Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes. J. Power Sources, 2015, 273, 305–311.
  • S. Yao, Y. Zhu. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6, 2345.
  • M. Chen, S. Duan, L. Zhang, Z. Wang, C. Li. Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT: PSS coating. Chem. Commun, 2015, 51, 3169–3172.
  • Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. M. Cheng. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater, 2011, 10, 424–428.
  • Y. H. Zhao, Y. F. Zhang, S. L. Bai, X. W. Yuan. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Compos. B, 2016, 94, 102–108.
  • Y. R, Jeong, H. Park, S. W. Jin, S. Y. Hong, S. S. Lee, J. S. Ha. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater, 2015, 25, 4228–4236.
  • H. Ji, L. Zhang, M. T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, R. S. Ruoff. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett, 2012, 12, 2446–2451.
  • X. Chen, Y. Lu, X. Zhang, F. Zhao. The thermal and mechanical properties of graphite foam-epoxy resin composites. Mater. Des, 2012, 40, 450–497.
  • Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater, 2013, 25, 1296–1300.
  • X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, H. Zhu. Multifunctional graphene woven fabrics. Sci. Rep, 2012, 2, 1–8.
  • J. Jia, X. Sun, X. Lin, X. Shen, Y. W. Mai, J. K. Kim. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano, 2014, 8, 5774–5783.
  • Y. Li, X. Zhao, P. Yu, Q. Zhang. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir 2012, 29, 493–500.
  • P. J. Hung, K. H. Chang, Y. F. Lee, C. C. Hu, K. M. Lin. Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochim. Acta, 2010, 55, 6015–6021.
  • Z. F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interface, 2013, 5, 2685–2691.
  • P. Yu, X. Zhao, Z. Huang, Y. Li, Q. Zhang. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J. Mater. Chem. A, 2014, 2, 14413–14420.
  • Y. Wang, X. Wu, W. Zhang. Synthesis and high-performance microwave absorption of graphene foam/polyaniline nanorods. Mater. Lett, 2016, 165, 71–74.
  • S. Sahoo, S. Dhibar, C. K. Das. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes. Express Polym. Lett, 2012, 6, 965–974.
  • Y. Liu, H. Wang, J. Zhou, L. Bian, E. Zhu, J. Hai, J. Tang, W. Tang. Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim. Acta, 2013, 112, 44–52.
  • S. Bose, N.H. Kim, T. Kuila, K.T. Lau, J.H. Lee. Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 2011, 22, 295202.
  • H. Li, L. Liu, F. Yang. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J. Mater. Chem. A, 2013, 1, 3446–3453.
  • S. Chabi, C. Peng, Z. Yang, Y. Xia, Y. Zhu. Three dimensional (3D) flexible graphene foam/polypyrrole composite: towards highly efficient supercapacitors. RSC Adv, 2015, 5, 3999–4008.
  • V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci, 2011, 4, 3243–3262.
  • H. Zhang, X. Yu, P. V. Braun. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol, 2011, 6, 277–281.
  • A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater, 2010, 9, 353–358.
  • G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li, H. M. Cheng. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy, 2015, 11, 356–365.
  • M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, H. J. Fan, Z. X. Shen. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364–372.
  • V. Sridhar, H. J. Kim, J. H. Jung, C. Lee, S. Park, I. K. Oh. Defect-engineered three-dimensional graphene–nanotube–palladium nanostructures with ultrahigh capacitance. ACS Nano, 2012, 6, 10562–10570.
  • X. Dong, J. Chen, Y. Ma, J. Wang, M. B. Chan-Park, X. Liu, L. Wang, W. Huang, P. Chen. Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun, 2012, 48, 10660–10662.
  • G. Zhu, Z. He, J. Chen, J. Zhao, X. Feng, Y. Ma, Q. Fan, L. Wang, W. Huang. Highly conductive three-dimensional MnO2–carbon nanotube–graphene–Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale, 2014, 6, 1079–1085.
  • J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen, X. W. D. Lou. High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci, 2014, 7, 3709–3719.
  • Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu. Highly compression‐tolerant supercapacitor based on polypyrrole‐mediated graphene foam electrodes. Adv. Mater, 2013, 25, 591–595.
  • S. Sankaran, K. Deshmukh, M. B. Ahamed, S. K. Pasha. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. A, 2018. 114, 49–71.
  • Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater, 2016, 26, 303–310.
  • M. Z. Li, L. C. Jia, X. P. Zhang, D. X. Yan, Q. C. Zhang, Z. M. Li. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J Colloid Interface Sci, 2018, 530, 113–119.
  • Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen. Broadband and tunable high‐performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater, 2015, 27, 2049–2053.
  • Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, J. K. Kim. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfacace, 2017, 9, 9059–9069.
  • J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen. Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47, 922–925.
  • N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. K. Kim. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high‐performance electromagnetic interference shielding. Adv. Mater, 2014, 26, 5480–5487.
  • P. Saini, M. Arora. New Polymers for Special Applications. InTech, 2012.
  • V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu. Functionalized graphene–PVDF foam composites for EMI shielding. Macromol. Mater. Eng, 2011, 296, 894–898.
  • B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng. Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon, 2016, 102, 154–160.
  • Y. Sun, Q. Wu, G. Shi. Graphene based new energy materials. Energy Environ. Sci, 2011, 4, 1113–1132.
  • H. C. Bi, X. Xie, K. B. Yin, Y. L. Zhou, S. Wan, L. B. He, F. Xu, F. Banhart, L. T. Sun, R. S. Ruoff. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater, 2012, 21, 4421–4425.
  • Y. R. Lin, G. J. Ehlert, C. Bukowsky, H. A. Sodano. Superhydrophobic functionalized graphene aerogels. ACS Appl. Mater. Interface, 2011, 7, 2200–2203.
  • Z. Cheng, J. Wang, H. Lai, Y. Du, R. Hou, C. Li, N. Zhang, K. Sun. pH-controllable on-demand oil/water separation on the switchable superhydrophobic/superhydrophilic and underwater low-adhesive superoleophobic copper mesh film. Langmuir, 2015, 31, 1393–1399.
  • C. Wu, X. Huang, X. Wu, R. Qian, P. Jiang. Mechanically flexible and multifunctional polymer‐based graphene foams for elastic conductors and oil‐water separators. Adv. Mater, 2013, 25, 5658–5662.
  • C. Liu, J. Yang, Y. Tang, L. Yin, H. Tang, C. Li. Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids Surf. A, 2015. 468, 10–16.
  • N. Chen, Q.M. Pan. Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano, 2013, 8, 6875–6883.
  • P. Calcagnile, D. Fragouli, I. S. Bayer, G. C. Anyfantis, L. Martiradonna, P. D. Cozzoli, R. Cingolani, A. Athanassiou. Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano, 2012, 6, 5413–5419.
  • Q. Song, Z. Jiang, N. Li, P. Liu, L. Liu, M. Tang, G. Cheng. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials, 2014, 35, 6930–6940.
  • S. W. Crowder, D. Prasai, R. Rath, D. A. Balikov, H. Bae, K. I. Bolotin, H. J. Sung. Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale, 2013, 5, 4171–4176.
  • E. Krueger, A. N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K. M. Yocham, K. D. Cantley, D. Estrada. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng, 2016, 2, 1234–1241.
  • H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, Z. Z. Yu. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interface, 2011, 3, 918–924.
  • A. Nieto, R. Dua, C. Zhang, B. Boesl, S. Ramaswamy, A. Agarwal. Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold. Adv. Funct. Mater, 2015, 25, 3916–3924.
  • A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, R. N. Shah. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano, 2015, 9, 4636–4648.
  • J. K. Wang, G. M. Xiong, M. Zhu, B. O¨zyilmaz, A. H. Castro Neto, N. S. Tan, C. Choong. Polymer-enriched 3D graphene foams for biomedical applications. ACS Appl. Mater. Interface, 2015, 7, 8275–8283.
  • Y. Shin, S. J. Song, S. Hong, S. Jeong, W. Chrzanowski, J. C. Lee, D. W. Han. Multifaceted biomedical applications of functional Graphene Nanomaterials to coated substrates, patterned arrays and hybrid scaffolds. Nanomaterials, 2017, 7, .369.
  • X. Zhang, K. K. Yeung, Z. Gao, J. Li, H. Sun, H. Xu, K. Zhang, M. Zhang, Z. Chen, M. M. Yuen, S. Yang. Exceptional thermal interface properties of a three-dimensional graphene foam. Carbon, 2014, 66, 201–209.
  • Y. Tao, D. Kong, C. Zhang, W. Lv, M. Wang, B. Li, Z. H. Huang, F. Kang, Q. H. Yang. Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon, 2014, 69, 169–177.
  • E. Singh, Z. Chen, F. Houshmand, W. Ren, Y. Peles, H. M Cheng, N. Koratkar. Superhydrophobic graphene foams. Small, 2013, 9, 75–80.
  • M. A. Worsley, S. O. Kucheyev, H. E. Mason, M. D. Merrill, B. P. Mayer, J. Lewicki, C. A. Valdez, M. E. Suss, M. Stadermann, P. J. Pauzauskie, J. H. Satcher Jr, J. Biener, T. F. Baumann. Mechanically robust 3D graphene macroassembly with high surface area. Chem. Commun, 2012, 48, 8428–8430.
  • J. Zhao, F. Du, W. Cui, P. Zhu, X. Zhou, X. Xie. Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites. Compos. A, 2014, 58, 1–6.
  • S. Choi, H. Im, J. Kim. Flexible and high thermal conductivity thin films based on polymer: aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites. Compos. A, 2012, 43, 1860–1868.
  • X. Cao, Z. Yin, H. Zhang. Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci, 2014, 7, 1850–1865.
  • D. X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, Z. M. Li. Structured reduced graphene oxide/polymer composites for ultra‐efficient electromagnetic interference shielding. Adv. Funct. Mater, 2015, 25, 559–566.
  • L. Jiang, Z. Fan. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6, 1922–1945.
  • S. Han, D. Wu, S. Li, F. Zhang, X. Feng. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater, 2014, 26, 849–864.
  • Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano, 2012, 7, 174–182.
  • C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song, Y. Yao, Y. Gong, I. Kierzewski, J. Xie, L. Hu. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci, 2017, 10, 538–545.
  • Z. Song, T. Xu, M. L. Gordin, Y. B. Jiang, I. T. Bae, Q. Xiao, H. Zhan, J. Liu, D. Wang. Polymer-graphene nanocomposites as ultrafast-charge and-discharge cathodes for rechargeable lithium batteries. Nano Lett, 2012, 12, 2205–2211.
  • E. Mariani, L. Pulsatelli, A. Facchini. Signaling pathways in cartilage repair. Int. J. Mol. Sci, 2014, 15, 8667–8698.
  • H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu. Ultralight and highly compressible graphene aerogels. Adv. Mater, 2013, 25, 2219–2223.
  • A. C. Ferrari, F. Bonaccorso, V. Fal'Ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. Koppens, V. Palermo, N. Pugno, J. A. Garrido. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598–4810.
  • T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science, 2008, 321, 1468–1472.
  • H. P. Cong, X. C. Ren, P. Wang, S. H. Yu. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6, 2693–2703.
  • H. Sun, Z. Xu, C. Gao. Multifunctional, ultra‐flyweight, synergistically assembled carbon aerogels. Adv. Mater, 2013, 25, 2554–2560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.