27
Views
4
CrossRef citations to date
0
Altmetric
Article

Effects of silkworm variety on the mechanical and structural properties of silk

, , , , &
Pages 827-837 | Received 31 Oct 2018, Accepted 03 Dec 2018, Published online: 11 Jan 2019

References

  • F. Zhang, Q. Lu, J. Dou, Z. Liu, B. Zuo, M. Qin, F. Li, L. David, X. Zhang. Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B, 2014, 2, 3879–3885.
  • F. Zhang, X. You, H. Dou, Z. Liu, B. Zuo, X. Zhang. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-Formic acid solution. ACS Appl. Mater. Inter., 2015, 7, 3352–3361.
  • N. Tansil, L. Koh, M. Han. Functional silk: colored and luminescent. Adv. Mater. Weinheim 2012, 24, 1388–1397.
  • H. Wang, Y. Chen, Y. Zhang. Processing and characterization of powdered silk micro- and nanofibers by ultrasonication. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 48, 444–452.
  • R. You, J. Zhang, S. Gu, Y. Zhou, X. Li, D. Ye, W. Xu. Regenerated egg white/silk fibroin composite films for biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 79, 430–435.
  • B. Joseph, C. Lu, C. Jeannine, L. David. Impact of silk biomaterial structure on proteolysis. Acta Biomater., 2015, 11, 212–221.
  • J. Chen, V. Kyile, X. Wang, N. Byme. What happens during natural protein fibre dissolution in ionic liquids. Materials, 2014, 7, 6158–6168.
  • M. Kang, P. Chen, H. Jin. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Curr. Appl. Phys., 2009, 9, 95–97.
  • Q. Wang, C. Wang, M. Zhang, M. Jiang, Y. Zhang. Feeding single walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett., 2016, 16, 6695–6700.
  • L. Cai, H. Shao, X. Hu, Y. Zhang. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain. Chem. Eng., 2015, 3, 2551–2557.
  • J. Kundu, Y. Chung, Y. Kim, G. Tae, S. Kundu. Silk fibroin nanoparticles for cellular uptake and control release. Int. J. Pharm., 2010, 388, 242–250.
  • S. Xiao, Z. Wang, H. Ma, H. Yang, W. Hu. Effective removal of dyes from aqueous solution using ultrafine silk fibroin powder. Adv. Powder Technol., 2014, 25, 574–581.
  • D. Rockwood, R. Preda, T. Yucel, X. Wang, M. Lovett, L. David. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc., 2011, 6, 1612–1631.
  • G. Fiorenzo, K. David. New opportunities for an ancient material. Science, 2010, 329, 528–531.
  • W. Huang, D. Ebrahimi, N. Dinjaski, A. Tarakanova, M. Buehler, J. Wong, L. David. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res., 2017, 50, 866–876.
  • R. Jelena, S. Lindsay, A. Kerry, T. Tess, M. Julianne, W. Huang, L. David. Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Sustain. Chem. Eng., 2015, 1, 260–270.
  • Y. Chen, W. Yang, W. Wang, M. Zhang, M. Li. Bombyx mori silk fibroin scaffolds with antheraea pernyi silk fibroin micro/nano fibers for promoting EA. hy926 cell proliferation. Materials, 2017, 10, 1153.
  • G. Tao, R. Cai, Y. Wang, K. Song, P. Guo, P. Zhao, H. Zuo, H. He. Biosynthesis and characterization of AgNPs–silk/PVA film for potential packaging application. Materials, 2017, 10, 667.
  • X. Lin, G. Yin, Z. Yi, T. Duan. Silk fiber as the support and reductant for the facile synthesis of Ag–Fe3O4 nanocomposites and its antibacterial properties. Materials, 2016, 9, 501.
  • V. Charu, L. David. Silk as a biomaterial. Prog. Polym. Sci., 2007, 32, 991–1007.
  • L. Koh, Y. Cheng, C. Teng, W. Khin, X. Loh, S. Tee, M. Low, E. Ye, H. Yu, Y. Zhang, M. Han. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci., 2015, 46, 86–110.
  • R. Amanda, L. David. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem., 2009, 19, 6443–6450.
  • G. Li, H. Liu, T. Li, J. Wang. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Mat. Sci. Eng. C, 2012, 32, 627–636.
  • N. Tansil, Y. Li, C. Teng, S. Zhang, K. Win, X. Chen, X. Liu, M. Han. Intrinsically colored and luminescent silk. Adv. Mater. Weinheim, 2011, 23, 1463–1466.
  • V. Rahmathulla. Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production: a review. Psyche, 2012, 2012, 121234.
  • J. Wang, L. Li, L. Feng, J. Li, L. Jiang, Q. Shen. Directly obtaining pristine magnetic silk fibers from silkworm. Int. J. Biol. Macromol., 2014, 64, 205–209.
  • Z. Shao, F. Vollrath. Surprising strength of silkworm silk. Nature, 2002, 418, 741.
  • L. Cheng, H. Huang, S. Chen, W. Wang, F. Dai, H. Zhao. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater. Design, 2017, 129, 125–134.
  • D. Chung, H. Kim, M. Kim, K. Lee, Y. Park, I. Um. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk. Int. J. Biol. Macromol., 2015, 79, 943–951.
  • F. Wan, T. Cao, Y. Zhang. Effect of silk protein surfactant on silk degumming and its properties. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 55, 131–136.
  • J. Wang, L. Li, M. Zhang, S. Liu, H. Jiang, Q. Shen. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mat. Sci. Eng. C, 2014, 34, 417–421.
  • P. Song, D. Zhang, X. Yao, F. Feng, G. Wu. Preparation of a regenerated silk fibroin film and its adsorbability to azo dyes. Int. J. Biol. Macromol., 2017, 102, 1066–1072.
  • L. Zhou, Q. Wang, J. Wen, X. Chen, Z. Shao. Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer, 2013, 54, 5035–5042.
  • G. Wu, P. Song, D. Zhang, Z. Liu, L. Li, H. Huang, H. Zhao, N. Wang, Y. Zhu. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int. J. Biol. Macromol., 2017, 104, 533–538.
  • S. Ling, K. Jin, L. David, M. Buehler. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett., 2016, 16, 3795–3800.
  • T. Luo, L. Yang, J. Wu, Z. Zheng, G. Li, X. Wang, L. David. Stabilization of natural antioxidants by silk biomaterials. ACS Appl. Mater. Interf., 2016, 8, 13573–13582.
  • H. Park, O. Lee, M. Lee, B. Moon, H. Ju, J. Lee, J. Kim, D. Kim, C. Park. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int. J. Biol. Macromol., 2015, 78, 215–223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.