105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discrete-time state delayed systems with saturation arithmetic: overflow oscillation-free realization

, , ORCID Icon &
Pages 43-52 | Received 06 Apr 2023, Accepted 21 Sep 2023, Published online: 25 Oct 2023

References

  • Chen SF. Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities. Chaos, Solitons & Fractals. 2009;42(2):1251–1257. doi: 10.1016/j.chaos.2009.03.026
  • Ji X, Liu T, Sun Y, et al. Stability analysis and controller synthesis for discrete linear time-delay systems with state saturation nonlinearities. Int J Syst Sci. 2010;42(3):397–406. doi: 10.1080/00207720903572406
  • Kandanvli VKR, Kar H. An LMI condition for robust stability of discrete-time state-delayed systems using quantization/overflow nonlinearities. Signal Proc. 2009;89(11):2092–2102. doi: 10.1016/j.sigpro.2009.04.024
  • Kandanvli VKR, Kar H. Delay-dependent LMI condition for global asymptotic stability of discrete-time uncertain state-delayed systems using quantization/overflow nonlinearities. Int J Robust Nonlinear Contrl. 2011;21(14):1611–1622. doi: 10.1002/rnc.1654
  • Seuret A, Gouaisbaut T, Fridman F. Stability of discrete time systems with time- varying delays via a novel summation inequality. IEEE Trans Automatic Control. 2015;60(10):2740–2745. doi: 10.1109/TAC.2015.2398885
  • Shao H, Han QL. New stability criteria for linear discrete time systems with interval-like time-varying delays. IEEE Trans Automatic Control. 2011;56(3):619–625. doi: 10.1109/TAC.2010.2095591
  • Singh V. A new realizability condition for limit cycle-free state-space digital filters employing saturation arithmetic. IEEE Trans Circuits Syst. 1985;32(10):1070–1071. doi: 10.1109/TCS.1985.1085612
  • Singh V. On global asymptotic stability of 2-D discrete systems with state saturation. Physics Lett A. 2008;372(32):5287–5289. doi: 10.1016/j.physleta.2008.06.009
  • Singh V. LMI approach to stability of a class of discrete-time systems using two’s complement arithmetic. Applied Math Comput. 2010;217(6):2877–2882. doi: 10.1016/j.amc.2010.08.023
  • Xu S, Lam J, Yang C. Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay. Syst Control Lett. 2001;43(2):77–84. doi: 10.1016/S0167-6911(00)00113-4
  • Xu S, Lam J, Zhang B, et al. A new result on the delay-dependent stability of discrete systems with time-varying delays. Int J Robust Nonlinear Control. 2014;24(16):2512–2521. doi: 10.1002/rnc.3006
  • Zhang B, Xu S, Zou Y. Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica. 2008;44(11):2963–2967. doi: 10.1016/j.automatica.2008.04.017
  • Ebert PM, Mazo JE, Taylor MG. Overflow oscillations in digital filters. The Bell Syst Technol J. 1969;48(9):2999–3020. doi: 10.1002/j.1538-7305.1969.tb01202.x
  • Mitra D. Large amplitude self-sustained oscillations in difference equations which describe digital filter sections using saturation arithmetic. IEEE Trans Acoust, Speech, Signal Process. 1977;25(2):134–143. doi: 10.1109/TASSP.1977.1162930
  • He Y, Wu M, Liu GP, et al. Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans Automatic Control. 2008;53(10):2372–2377. doi: 10.1109/TAC.2008.2007522
  • Kandanvli VKR, Kar H. Delay-dependent stability criterion for discrete-time uncertain state-delayed systems employing saturation nonlinearities. Arabian J Sci Eng. 2013;38(10):2911–2920. doi: 10.1007/s13369-013-0613-2
  • Tadepalli SK, Kandanvli VKR, Vishwakarma A. Criteria for stability of uncertain discrete-time systems with time-varying delays and finite wordlength nonlinearities. Trans Inst Meas Control. 2018;40(9):2868–2880. doi: 10.1177/0142331217709067
  • Agrawal K, Negi R, Pal VC, et al. Delay partitioning approach to the delay-dependent stability of discrete-time systems with anti-windup. Smart Sci. 2023;11(3):1–22. doi: 10.1080/23080477.2023.2172706
  • Nam PT, Pathirana PN, Trinh H. Discrete Wirtinger-based inequality and its application. J Frankl Inst. 2015;352(5):1893–1905. doi: 10.1016/j.jfranklin.2015.02.004
  • Park P, Ko JW, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica. 2011;47(1):235–238. doi: 10.1016/j.automatica.2010.10.014
  • Liu J, Zhang J. Note on stability of discrete-time time-varying delay systems. IET Control Theory Appl. 2012;6(2):335–339. doi: 10.1049/iet-cta.2011.0147
  • Jiang X, Han QL, Yu X. Stability criteria for linear discrete-time systems with interval-like time-varying delay. Amer Control Conf Portland, OR, USA. 2005 June 8-10;4:2817–2822.
  • Zhang CK, He Y, Jiang L, et al. An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica. 2017;85:481–485. doi: 10.1016/j.automatica.2017.07.056
  • Tadepalli SK, Kandanvli VKR. Improved stability results for uncertain discrete-time state-delayed systems in the presence of nonlinearities. Trans Inst Meas Control. 2016;38(1):33–43. doi: 10.1177/0142331214562020
  • Parthipan CG, Kokil P. Overflow oscillations free implementation of state-delayed digital filter with saturation arithmetic and external disturbance. Trans Inst Meas Control. 2020;42(2):188–197. doi: 10.1177/0142331219865058
  • Parthipan CG, Kokil P. Delay-dependent stability analysis of interfered digital filters with time-varying delay and saturation nonlinearities. Circuits Syst Signal Process. 2022;41(10):5765–5784. doi: 10.1007/s00034-022-02052-0
  • Parthipan CG, Kokil P. Stability of state-delayed digital filters with overflow nonlinearities. Trans Inst Meas Control. 2022;44(8):1599–1610. doi: 10.1177/01423312211059519
  • Su H, Ji X, Chu J. New results of robust quadratically stabilizing control for uncertain linear time-delay systems. Int J Syst Sci. 2007;36(1):27–37. doi: 10.1080/0020772042000320768
  • Boyd S, Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory. Philadelphia (PA): Society for Industrial and Applied Mathematics; 1994. doi: 10.1137/1.9781611970777
  • Gahinet P, Nemirovskii A, Laub AJ, et al. LMI control toolbox: for use with matlab. Natick (MA): The MATH Works Inc; 1995.
  • Löfberg J. YALMIP: a toolbox for modeling and optimization in MATLAB. IEEE Int Conf Robot Automat, Taipei, Taiwan. 2004 Sep 2–4;2004: 284–289.
  • Peng D, Zhang J, Hua C, et al. A delay-partitioning approach to the stability analysis of 2-D linear discrete-time systems with interval time-varying delays. Int J Control, Automat Syst. 2018;16(2):682–688. doi: 10.1007/s12555-016-0518-4
  • Hua M, Zhang J, Chen J, et al. Delay decomposition approach to robust delay- dependent H∞ filtering of uncertain stochastic systems with time-varying delays. Trans Inst Meas Control. 2014;36(8):1143–1152. doi: 10.1177/0142331214535618
  • Lee L, Tsai HJ. Delay-partitioning approach to H∞ performance analysis of discrete-time systems with interval time-varying delay. Appl Mechanic Mater. 2013;427-429:1364–1367. doi: 10.4028/www.scientific.net/AMM.427-429.1364
  • Singh K, Kandanvli VKR, Kar H. Criterion for the H∞ suppression of overflow oscillations in fixed point digital filters employing saturation nonlinearities and external interference. Fluctuation Noise Lett. 2022;21(1):2250002-1 – 2250002–10. doi: 10.1142/S021947752250002X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.