91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intelligent faults diagnostics of turbine vibration’s via Fourier transform and neuro-fuzzy systems with wavelets exploitation

, , ORCID Icon &
Pages 155-184 | Received 19 Mar 2023, Accepted 06 Nov 2023, Published online: 12 Nov 2023

References

  • Nath AG, Udmale SS, Kumar Singh S. Role of artificial intelligence in rotor fault diagnosis: a comprehensive review. Artif Intell Rev. 2021;54(4):2609–2668. doi: 10.1007/s10462-020-09910-w
  • Muhammad AW, Rafique Y, Uddin GM, et al. Chaudhary Awais Salman, artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing. Alexandria Eng J. 2022;61(3):1864–1880. doi: 10.1016/j.aej.2021.07.039
  • Ali Z, Noshadi A, Reza Khosravani M, et al. Unwanted noise and vibration control using finite element analysis and artificial intelligence. Appl Math Modell. 2014;38(9/10):2435–2453. doi: 10.1016/j.apm.2013.10.039
  • Yıldırım S, Tosun E, Çalık A, et al. Artificial intelligence techniques for the vibration, noise, and emission characteristics of a hydrogen-enriched diesel engine. Energy Sources Part A. 2019;41(18):2194–2206. doi: 10.1080/15567036.2018.1550540
  • Saini K, Dhami SS, Vanraj, et al. Predictive monitoring of incipient faults in rotating machinery: a systematic review from data acquisition to artificial intelligence. Archiv Comput Methods Eng. 2022;29(6):4005–4026. doi: 10.1007/s11831-022-09727-6
  • Mehmet Mert İ, Yavuz Ş, Taser PY. Pelin Yildirim taser, generalized input preshaping vibration control approach for multi-link flexible manipulators using machine intelligence. Mechatronics. 2022;82:102735. doi: 10.1016/j.mechatronics.2021.102735
  • Zhao C. Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence. J Process Control. 2022;116:255–272. doi: 10.1016/j.jprocont.2022.06.011
  • Chao S, Cheng W, Chen X, et al. Identification and separation of coupled vibration sources in multi-rotor gas turbines under time-varying speed conditions. Mech Syst Signal Process. 2023;188:110037. doi: 10.1016/j.ymssp.2022.110037
  • Seung-Hoon K, Kim Y, Cho H, et al. Improved hyper-reduction approach for the forced vibration analysis of rotating components. Computational Mechanics. 2022;69(6):1443–1456. doi: 10.1007/s00466-022-02149-y
  • Montazeri-Gh M, Nekoonam A. Gas path component fault diagnosis of an industrial gas turbine under different load condition using online sequential extreme learning machine. Eng Fail Anal. 2022;135:106115. doi: 10.1016/j.engfailanal.2022.106115
  • Zhang D, Feng Z. Enhancement of time-frequency post-processing readability for nonstationary signal analysis of rotating machinery: principle and validation. Mech Syst Signal Process. 2022;163:108145. doi: 10.1016/j.ymssp.2021.108145
  • Liu S, Wang H, Tang J, et al. Research on fault diagnosis of gas turbine rotor based on adversarial discriminative domain adaption transfer learning. Measurement. 2022;196:111174. doi: 10.1016/j.measurement.2022.111174
  • Zhao J, Yi-Guang L, Sampath S. A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics. Appl Energy. 2023;332:120520. doi: 10.1016/j.apenergy.2022.120520
  • Amirkhani S, Tootchi A, Chaibakhsh A. Fault detection and isolation of gas turbine using series–parallel NARX model. ISA Trans. 2022;120:205–221. doi: 10.1016/j.isatra.2021.03.019
  • Zhang J, Chen Y, Ning L, et al. A weak fault identification method of micro-turbine blade based on sound pressure signal with LSTM networks. Aerosp Sci Technol. 2023;136:108226. doi: 10.1016/j.ast.2023.108226
  • Chen J, Lin C, Yao B, et al. Hongjuan ge, intelligent fault diagnosis of rolling bearings with low-quality data: a feature significance and diversity learning method. Reliab Eng Syst Saf. 2023;237:109343. doi: 10.1016/j.ress.2023.109343
  • Zhang Z, Shuiqing X, Chen H. Discriminative feature learning and selection with label-induced sparse filtering for intelligent fault diagnosis of rotating machinery. Mech Syst Signal Process. 2023;196:110338. doi: 10.1016/j.ymssp.2023.110338
  • Zohair Djeddi A, Hafaifa A, Hadroug N, et al. Gas turbine availability improvement based on long short-term memory networks using deep learning of their failures data analysis. Process SafEnviron Prot. 2022;159:1–25. doi: 10.1016/j.psep.2021.12.050
  • Djeddi C, Hafaifa A, Iratni A, et al. Robust diagnosis with high protection to gas turbine failures identification based on a fuzzy neuro inference monitoring approach. J Manuf Syst. 2021;59:190–213. doi: 10.1016/j.jmsy.2021.02.012
  • Hafaifa A, Guemana M, Daoudi A. Vibration supervision in gas turbine based on parity space approach to increasing efficiency. J Vibr Control. 2015;21(8):1622–1632. doi: 10.1177/1077546313499927
  • Ross B, Wells C, Schoof C, et al. Analysis of multiple gas turbine failures due to high order (6e) resonant vibrations. Technol Law Ins. 1998;3(1):33–45. doi: 10.1080/135993798349640
  • Kosowski K, Prochnicki W. Some aspects of self-excited vibration in compressor and turbine rotor systems. Technol Law Ins. 1999;4(3/4):227–230. doi: 10.1080/135993799348956
  • Hadroug N, Hafaifa A, Abdellah K, et al. Dynamic model linearization of two shafts gas turbine via their input/output data around the equilibrium points. Energy. 2017;120:488–497. doi: 10.1016/j.energy.2016.11.099
  • Hadroug N, Hafaifa A, Batel N. Kouzou Abdellah and Ahmed Chaibet, active fault tolerant control based on a neuro fuzzy inference system applied to a two shafts gas turbine. J Appl Artificial Int. 2018;32(6):515–540. doi: 10.1080/08839514.2018.1483114
  • Alaoui M, Alshammari OS, Iratni A, et al. Gas turbine speed monitoring using a generalized predictive adaptive control algorithm. Stud Inf Control. 2022;31(3):87–96. doi: 10.24846/v31i3y202208
  • Ben Rahmoune M, Hafaifa A, Kouzou A, et al. Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling. Math Comput Simul. 2021;179:23–47. doi: 10.1016/j.matcom.2020.07.017
  • Benrahmoune M, Hafaifa A, Mouloud G. Mouloud Guemana and XiaoQi Chen, detection and modeling vibrational behavior of a gas turbine based on dynamic neural networks approach. J Mech Eng. 2018;68(3):143–166. doi: 10.2478/scjme-2018-0032
  • Jalayer M, Orsenigo C, Vercellis C. Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, fast Fourier and continuous wavelet transforms. Comput Ind. 2021;125:103378. doi: 10.1016/j.compind.2020.103378
  • Yildirim S. Free vibration of axially or transversely graded beams using finite-element and artificial intelligence. Alexandria Eng J. 2022;61(3):2220–2229. doi: 10.1016/j.aej.2021.07.004
  • Liu T-C, Tian-Yau W. Application of empirical mode decomposition and envelop analysis to fault diagnosis in roller bearing with single/double defect. Smart Sci. 2017;5(3):150–159. doi: 10.1080/23080477.2017.1346497
  • Jing Y, Yao Z, Jiang H, et al. Multi-lifting synchrosqueezing transform for nonstationary signal analysis of rotating machinery. Measurement. 2022;191:110758. doi: 10.1016/j.measurement.2022.110758
  • Zhongzheng Z, Yabin H, Bing L, et al. Compact phase-modulated metasurface for vibration encoding and localization by single-sensor. Int J Mech Sci. 2023;242:108008. doi: 10.1016/j.ijmecsci.2022.108008
  • DeCai L, Zhang M, Kang T, et al. Fault diagnosis of rotating machinery based on dual convolutional-capsule network (DC-CN). Measurement. 2022;187:110258. doi: 10.1016/j.measurement.2021.110258
  • Ben Rahmoune M, Iratni A, Hafaifa A. Ilhami Colak, Gas turbine vibration detection and identification based on dynamic artificial neural networks. Electroteh Electron Automat (EEA). 2023;71(2):19–27. doi: 10.46904/eea.23.71.2.1108003
  • Fatsis A. Gas turbine performance enhancement for naval ship propulsion using wave rotors. J Mar EngTechnol. 2022;21(5):297–309. doi: 10.1080/20464177.2021.1933697
  • Brito Lucas C, Antonio Susto G, Brito JN, et al. An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mech Syst Signal Process. 2022;163:108105. doi: 10.1016/j.ymssp.2021.108105
  • Aissat S, Hafaifa A, Iratni A, et al. Identification of two-shaft gas turbine variables using a decoupled multi-model approach with genetic algorithm. Period Polytech Mech Eng. 2021;65(3):229–245. doi: 10.3311/PPme.17206
  • Aissat S, Hafaifa A, Iratni A, et al. Fuzzy decoupled-states multi-model identification of gas turbine operating variables through the use of their operating data. ISA Trans. 2023;133:384–396. doi: 10.1016/j.isatra.2022.07.005
  • Hadroug N, Hafaifa A, Alili B, et al. Fuzzy diagnostic strategy implementation for gas turbine vibrations faults detection: towards a characterization of symptom–fault correlations. J Vib Eng Technol. 2022;10(1):225–251. doi: 10.1007/s42417-021-00373-z
  • Gaponenko EV, Malyshev DI, Misyurin SY, et al. On a possibility of using vibrational displacement in artificial intelligence-based ship accident predictive models. Procedia Comput Sci. 2022;213:696–702. doi: 10.1016/j.procs.2022.11.123
  • Xie J, Sage M, Fiona Zhao Y. Feature selection and feature learning in machine learning applications for gas turbines: a review. Eng Appl Artif Intell. 2023;117:105591. Part A. doi: 10.1016/j.engappai.2022.105591.
  • Qihang L, Chen C, Gao S, et al. The coupled bending-torsional dynamic behavior in the rotating machinery: modeling, simulation and experiment validation. Mech Syst Signal Process. 2022;178:109306. doi: 10.1016/j.ymssp.2022.109306
  • Aissat S, Hafaifa A, Iratni A, et al. Exploitation of multi-models identification with decoupled states in twin shaft gas turbine variables for its diagnosis based on parity space approach. Int J Dyn Control. 2022;10(1):25–48. doi: 10.1007/s40435-021-00804-5
  • Shang Y, Nguyen H, Bui X-N, et al. A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat Resour Res. 2020;29(2):723–737. doi: 10.1007/s11053-019-09503-7
  • Milutin R, Vujnović S, Krstić A, et al. IoT system for detecting the condition of rotating machines based on acoustic signals. Appl Sci. 2022;12(9):4385. doi: 10.3390/app12094385
  • Yuqi L, Wen C, Luo Z, et al. Vibration analysis of a multi-disk bolted joint rotor-bearing system subjected to fixed-point rubbing fault. Int J Non Linear Mech. 2022;146:104165. doi: 10.1016/j.ijnonlinmec.2022.104165
  • Javier V. Vibration analysis for fault detection in wind turbines using machine learning techniques. Adv Comput Int. 2022;2(1):1–12. doi: 10.1007/s43674-021-00029-1
  • Xiao-Wei Y, Sun Z, Jun L. Prediction and early warning of wind-induced girder and tower vibration in cable-stayed bridges with machine learning-based approach. Eng Struct. 2023;275:115261. Part A. doi: 10.1016/j.engstruct.2022.115261.
  • Yazdani S, Montazeri-Gh M. A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic. Comput Ind. 2020;115:103131. doi: 10.1016/j.compind.2019.103131
  • Putra TE, Abdullah S, Nuawi MZ, et al. Extracted fatigue damaging events using the Morlet wavelet-based algorithm. HKIE Trans. 2011;18(1):22–29. doi: 10.1080/1023697X.2011.10668220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.