25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergistic integration of MSF and RO technologies in PTC using hybrid technique

, , &
Pages 253-268 | Received 24 Oct 2023, Accepted 15 Feb 2024, Published online: 19 Mar 2024

References

  • Vörösmarty CJ, McIntyre PB, Gessner MO, et al. Global threats to human water security and river biodiversity. Nature. 2010;467(7315):555–61. doi: 10.1038/nature09440
  • McDonald RI, Green P, Balk D, et al. Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci, USA. 2011;108(15):6312–6317. doi: 10.1073/pnas.1011615108
  • Gude VG, Nirmalakhandan N, Deng S. Renewable and sustainable approaches for desalination. Renew Sust Energ Rev. 2010;14(9):2641–54. doi: 10.1016/j.rser.2010.06.008
  • Zheng Y, Hatzell KB. Technoeconomic analysis of solar thermal desalination. Desalination. 2020;474:114168. doi: 10.1016/j.desal.2019.114168
  • Reddy KS, Sharon H. Energy-environment-economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production. Energy Convers Manag. 2017;151:259–85. doi: 10.1016/j.enconman.2017.08.064
  • Karavas CS, Arvanitis KG, Kyriakarakos G, et al. A novel autonomous PV powered desalination system based on a DC microgrid concept incorporating short-term energy storage. Solar Energy. 2018;159:947–61. doi: 10.1016/j.solener.2017.11.057
  • Karavas CS, Arvanitis KG, Papadakis G. Optimal technical and economic configuration of photovoltaic powered reverse osmosis desalination systems operating in autonomous mode. Desalination. 2019;466:97–106. doi: 10.1016/j.desal.2019.05.007
  • Liponi A, Wieland C, Baccioli A. Multi-effect distillation plants for small-scale seawater desalination: thermodynamic and economic improvement. Energy Convers Manag. 2020;205:112337. doi: 10.1016/j.enconman.2019.112337
  • Alhazmy MM. Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling. Energy. 2014;76:1029–35. doi: 10.1016/j.energy.2014.09.022
  • Jamil MA, Shahzad MW, Zubair SM. A comprehensive framework for thermoeconomic analysis of desalination systems. Energy Convers Manag. 2020;222:113188. doi: 10.1016/j.enconman.2020.113188
  • Wang Q, Wang L. Renewable energy consumption and economic growth in OECD countries: a nonlinear panel data analysis. Energy. 2020;207:118200. doi: 10.1016/j.energy.2020.118200
  • Obara SY. Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics. Appl Energy. 2015;141:19–31. doi: 10.1016/j.apenergy.2014.12.013
  • Tan Q, Mei S, Ye Q, et al. Optimization model of a combined wind–PV–thermal dispatching system under carbon emissions trading in China. J Clean Prod. 2019;225:391–404. doi: 10.1016/j.jclepro.2019.03.349
  • Blondeau J, Mertens J. Impact of intermittent renewable energy production on specific CO2 and NOx emissions from large scale gas-fired combined cycles. J Clean Prod. 2019;221:261–270. doi: 10.1016/j.jclepro.2019.02.182
  • Young J, Brans M. Analysis of factors affecting a shift in a local energy system towards 100% renewable energy community. J Clean Prod. 2017;169:117–24. doi: 10.1016/j.jclepro.2017.08.023
  • Ma T, Javed MS. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Convers Manag. 2019;182:178–90. doi: 10.1016/j.enconman.2018.12.059
  • Buonomano A, Calise F, d’Accadia MD, et al. A hybrid renewable system based on wind and solar energy coupled with an electrical storage: dynamic simulation and economic assessment. Energy. 2018;155:174–189. doi: 10.1016/j.energy.2018.05.006
  • Rajesh P, Gandla PK, Smart DS, et al. Production of power and fresh water using renewable energy with thermal energy storage based on fire hawk optimization. Intell Decis Technol (Preprint). 2023;1–24. doi: 10.3233/IDT-230536
  • Ceran B. The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer. Energy. 2019;167:853–65. doi: 10.1016/j.energy.2018.11.028
  • Herrando M, Pantaleo AM, Wang K, et al. Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renewable Energy. 2019;143:637–47. doi: 10.1016/j.renene.2019.05.004
  • Sadeghi K, Ghazaie SH, Sokolova E, et al. Comprehensive techno-economic analysis of integrated nuclear power plant equipped with various hybrid desalination systems. Desalination. 2020;493:114623. doi: 10.1016/j.desal.2020.114623
  • Aboelmaaref MM, Zayed ME, Zhao J, et al. Hybrid solar desalination systems driven by parabolic trough and parabolic dish CSP technologies: technology categorization, thermodynamic performance and economical assessment. Energy Convers Manag. 2020;220:113103. doi: 10.1016/j.enconman.2020.113103
  • Ghenai C, Kabakebji D, Douba I, et al. Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water. Energy. 2021;215:119212. doi: 10.1016/j.energy.2020.119212
  • Ghorbani B, Shirmohammadi R, Mehrpooya M. Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system. Sustainable Energy Technol Assess. 2020;37:100572. doi: 10.1016/j.seta.2019.100572
  • Moharram NA, Bayoumi S, Hanafy AA, et al. Hybrid desalination and power generation plant utilizing multi-stage flash and reverse osmosis driven by parabolic trough collectors. Case Stud Thermal Eng. 2021;23:100807. doi: 10.1016/j.csite.2020.100807
  • Khosravi A, Santasalo-Aarnio A, Syri S. Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil. Energy. 2021;234:121309. doi: 10.1016/j.energy.2021.121309
  • Ziyaei M, Jalili M, Chitsaz A, et al. Dynamic simulation and life cycle cost analysis of a MSF desalination system driven by solar parabolic trough collectors using TRNSYS software: a comparative study in different world regions. Energy Convers Manag. 2021;243:114412. doi: 10.1016/j.enconman.2021.114412
  • El-Agouz SA, Abd Elbar AR, Aboghazala AM, et al. Comprehensive parametric analysis, sizing, and performance evaluation of a tubular direct contact membrane desalination system driven by heat pipe-based solar collectors. Energy Convers Manag. 2022;274:116437. doi: 10.1016/j.enconman.2022.116437
  • Aboelmaaref MM, Zhao J, Zayed ME, et al. Design and dynamic numerical modeling of a hybrid reverse osmosis/adsorption-based distillation system driven by solar dish stirling engine for enhanced performance and waste heat recovery. Process SafEnviron Prot. 2023;180:324–38. doi: 10.1016/j.psep.2023.10.012
  • El-Agouz SA, Zayed ME, Ghazala AM, et al. Solar thermal feed preheating techniques integrated with membrane distillation for seawater desalination applications: recent advances, retrofitting performance improvement strategies, and future perspectives. Process SafEnviron Prot. 2022;164:595–612. doi: 10.1016/j.psep.2022.06.044
  • Aboelmaaref MM, Zhao J, Li W, et al. Research on solar dish/Stirling engine driven adsorption-based desalination system for simultaneous co-generation of electricity and freshwater: numerical investigation. Case Stud Thermal Eng. 2023;47:103044. doi: 10.1016/j.csite.2023.103044
  • El-Dessouky HT, Ettouney HM. Reverse osmosis feed treatment, biofouling, and membrane cleaning. Fundam Salt Water Desalin. 2002;439–452.
  • Alhaj M, Mabrouk A, Al-Ghamdi SG. Energy efficient multi-effect distillation powered by a solar linear fresnel collector. Energy Convers Manag. 2018;171:576–86. doi: 10.1016/j.enconman.2018.05.082
  • Kopp J, Boehm RF. Comparison of two-tank indirect thermal storage designs for solar parabolic trough power plants. Energy Sustainability. 2009;48906:683–688.
  • Nafey AS, Fath HE, Mabrouk AA. A new visual package for design and simulation of desalination processes. Desalination. 2006;194(1–3):281–96. doi: 10.1016/j.desal.2005.09.032
  • Voros NG, Kiranoudis CT, Maroulis ZB. Solar energy exploitation for reverse osmosis desalination plants. Desalination. 1998;115(1):83–101. doi: 10.1016/S0011-9164(98)00029-0
  • Altmann T, Robert J, Bouma A, et al. Primary energy and exergy of desalination technologies in a power-water cogeneration scheme. Appl Energy. 2019;252:113319. doi: 10.1016/j.apenergy.2019.113319
  • Kesieme UK, Milne N, Aral H, et al. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination. 2013;323:66–74. doi: 10.1016/j.desal.2013.03.033
  • Ali ES, Farid AM, Askalany AA, et al. Cost analysis and performance investigation of solar-powered desalination system utilizing modified sodium polyacrylate adsorbent material. Energy Convers Manage: X. 2023;20:100421. doi: 10.1016/j.ecmx.2023.100421
  • Alsaman AS, Askalany AA, Ibrahim EM, et al. Characterization and cost analysis of a modified silica gel-based adsorption desalination application. J Clean Prod. 2022;379:134614. doi: 10.1016/j.jclepro.2022.134614
  • Alsaman AS, Ibrahim EM, Askalany AA, et al. Composite material-based a clay for adsorption desalination and cooling applications. Chem Eng Res Des. 2022;188:417–32. doi: 10.1016/j.cherd.2022.09.017
  • Alsaman AS, Ahmed MS, Ibrahim EM, et al. Experimental investigation of porous carbon for cooling and desalination applications. Npj Clean Water. 2023;6(1):4. doi: 10.1038/s41545-022-00211-z
  • Alsaman AS, Ibrahim EM, Ahmed MS, et al. Experimental investigation of sodium polyacrylate-based innovative adsorbent material for higher desalination and cooling effects. Energy Convers Manag. 2022;266:115818. doi: 10.1016/j.enconman.2022.115818
  • Zohir AE, Ali ES, Farid AM, et al. A state-of-the-art of experimentally studied adsorption water desalination systems. IntJ Energy Environ Eng. 2023;14(4):573–99. doi: 10.1007/s40095-022-00536-y
  • Ghazy M, Askalany AA, Ibrahim EM, et al. Solar powered adsorption desalination system employing CPO-27 (ni). J Energy Storage. 2022;53:105174. doi: 10.1016/j.est.2022.105174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.