34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biofabrication, spectroscopic, and photocatalytic studies of titania nanoparticles mediated by Proteus mirabilis strain NG-ABK-32 for smart applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bafana A, Devi SS, Chakrabarti TA. Azo dyes: past, present and the future. Environ Rev. 2011;19(NA):350–371. doi: 10.1139/a11-018
  • Gautam S, Kaithwas G, Bharagava RN, and Saxena G. Pollutants in tannery wastewater, their pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN, editors. Environmental pollutants and their bioremediation approaches. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group; 2017. p. 369–396. doi:10.1201/9781315173351-14
  • Bloch K, Webster TJ, Ghosh S. Mycogenic synthesis of metallic nanostructures and their use in dye degradation. In: Dave S, Das J Shah M editors. Photocatalytic degradation of dyes: current trends and future. Amsterdam, Netherlands: Elsevier; 2020. p. 509–525. doi:10.1016/B978-0-12-823876-9.00014-7
  • Samsami S, Mohamadizaniani M, Sarrafzadeh M, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot. 2020;143:138–163. doi: 10.1016/j.psep.2020.05.034
  • Al-Tohamy R, Sun J, Fareed MF, et al. Ecofriendly biodegradation of reactive black 5 by newly isolated sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci Rep. 2020;10(1):12370. doi: 10.1038/s41598-020-69304-4
  • Dai Q, Zhang S, Liu H, et al. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochem. 2020;131:107–149. doi: 10.1016/j.bioelechem.2019.107349
  • Sarria V, Parra S, Invernizzi M, et al. Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Sci Technol. 2001;44(5):93–101. doi: 10.2166/wst.2001.0259
  • Sagadevan S, Imteyaz S, Murugan B, et al. A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Process Synth. 2022;11(1):44–63. doi: 10.1515/gps-2022-0005
  • Mandeep D, Shukla P. Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol. 2020;11:590631. doi: 10.3389/fmicb.2020.590631
  • Hashem AH, Saied E, Amin BH, et al. Antifungal activity of biosynthesized silver nanoparticles (AgNps) against Aspergilli causing aspergillosis: ultrastructure study. J Funct Biomater. 2022;13(4):242. doi: 10.3390/jfb13040242
  • Nassar ARA, Eid AM, Atta HM, et al. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep. 2023;13(1):9054. doi: 10.1038/s41598-023-35360-9
  • Ejidike IP, Clayton HS. Green synthesis of silver nanoparticles mediated by Daucus carota L.: antiradical, antimicrobial potentials, in vitro cytotoxicity against brain glioblastoma cells. Green Chem Lett Rev. 2022;15(2):298–311. doi: 10.1080/17518253.2022.2054290
  • Yadav KK, Singh JK, Kumar GV. A review of nanobioremediation technologies for environmental cleanup: A novel biological approach. J Mater Environ Sci. 2017;8(2):740–757.
  • Sagadevan S, Lett JA, Fatimah I, et al. Current trends in the green syntheses of tin oxide nanoparticles and their biomedical applications. Mater Res Express. 2021;8(8):082001. doi: 10.1088/2053-1591/ac187e
  • Anbumani DK, Manoharan J, Babujanarthanam R, et al. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J King Saud Univ Sci. 2022;34(3):101896. doi: 10.1016/j.jksus.2022.101896
  • Kirthi AV, Rahuman AA, Rajakumar G, et al. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater. 2011;65(17–18):2745–2747. doi: 10.1016/j.matlet.2011.05.077
  • Ordenes-Aenishanslins NA, Saona LA, Duran-Toro VM, et al. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Fact. 2014;13(1):90–100. doi: 10.1186/PREACCEPT-9047619127147283
  • Khan R, Fulekar M. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye reactive red 31. J Colloid Interface Sci. 2004;475(2):184–191. doi:10.1016/j.jcis.2016.05.001
  • Metwally RA, El Nady J, Ebrahim S, et al. Biosynthesis, characterization and optimization of TiO2 nanoparticles by novel marine halophilic Halomonas sp. RAM2: application of natural dye-sensitized solar cells. Microb Cell Fact. 2023;22(1):78–94. doi: 10.1186/s12934-023-02093-3
  • Abdel-Maksoud G, Abdel-Nasser M, Hassan SE-D, et al. Biosynthesis of titanium dioxide nanoparticles using probiotic bacterial strain, Lactobacillus rhamnosus, and evaluate of their biocompatibility and antifungal activity. Biomass Conv Bioref. 2023. doi: 10.1007/s13399-023-04587-x
  • Drzewiecka D. Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol. 2016;72(4):741–758. doi: 10.1007/s00248-015-0720-6
  • Yuan F, Huang Z, Yang T, et al. Pathogenesis of proteus mirabilis in catheter-associated urinary tract infections. Urol Int. 2021;105(5–6):354–361. doi: 10.1159/000514097
  • Amaresan N, Velusamy J, Kumar K, et al. Plant growth-promoting effects of Proteus mirabilis isolated from tomato (Lycopersicon esculentum mill) plants. Natl Acad Sci Lett. 2021;44(5):453–455. doi: 10.1007/s40009-020-01038-3
  • Chen KC, Huang WT, Wu JY, et al. Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol. 1999;23(1):686–690. doi: 10.1038/sj.jim.2900689
  • Olukanni OD. Decolourisation and degradation of textile reactive azo dyes by a strain of Proteus mirabilis [ PhD Thesis and Dissertation]. A thesis submitted to University of Lagos School of Postgraduate Studies; 2012; p. 165.
  • Baird R, Bridgewater L. Standard methods for the examination of water and wastewater. 23rd ed. Washington DC: American Public Health Association; 2017.
  • Karim ME, Dhar K, Hossain MT. Decolorization of textile reactive dyes by bacterial monoculture and consortium screened from textile dyeing effluent. J Genet Eng Biotechnol. 2018;16(2):375–380. doi: 10.1016/j.jgeb.2018.02.005
  • Sriram PL, Siddharth G. Microbial decolourization of dye effluent. Int Res J Multidisciplinary Sci Technol. 2016;1(7):13–20.
  • Tamura K, Stecher G, Kumar S, et al. MEGA 11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120
  • Landage KS, Arbade G, Khanna P, et al. Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and anti-bioflm applications. J Microbiol Experiment. 2020;8(1):36–43. doi: 10.15406/jmen.2020.08.00283
  • Ambaye TG, Hagos K. Photocatalytic and biological oxidation treatment of real textile wastewater. Nanotechnol Environ Eng. 2020;5(3):28–39. doi: 10.1007/s41204-020-00094-w
  • IBM SPSS Statistics for Windows. Version 23, IBM corp. Armonk, N.Y. USA: IBM Corp; 2015.
  • Khalik WF, Ho L, Ong S, et al. Decolorization and mineralization of Batik wastewater through solar photocatalytic process. Sains Malaysiana. 2015;44(4):607–612. doi: 10.17576/jsm-2015-4404-16
  • Dada EO, Akanni AR, Akinola M. Comparative physicochemical and genotoxicity assessment of textile mill company effluent and local tie-and-dye textile wastewater. J Appl SCI Environ Manag. 2017;21(5):877–882. doi: 10.4314/jasem.v21i5.13
  • Okareh OT, Ademodi TF, Igbinosa EO. Biotreatment of effluent from ‘adire’ textile factories in Ibadan, Nigeria. Environ Monit Assess. 2017;189(12):629. doi: 10.1007/s10661-017-6357-9
  • Hassan H, Omoniyi KI, Okibe FG, et al. Evaluation of antibacterial potential of biosynthesized plant leave extract mediated titanium oxide nanoparticles using Hypheae thiebeace and anannos seneglensis. J Appl Sci Environment Manag. 2019;23(10):1795–1804. doi: 10.4314/jasem.v23i10.5
  • Taran M, Rad M, Alavi M. Biosynthesis of TiO2 and ZnO nanoparticles by halomonas elongata IBRC-M 10214 in different conditions of medium. Bioimpacts. 2018;8(2):81–89. doi: 10.15171/bi.2018.10
  • Kim DH, Ryu HW, Moon JH, et al. Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J Power Sources. 2013;163(1):196–200. doi: 10.1016/j.jpowsour.2005.12.060
  • Palajonnala NB, Banoth P, Bustamante Dominguez AG, et al. Biogenic photo-catalyst TiO2 nanoparticles for remediation of environment pollutants. ACS Omega. 2022;7(30):26174–26189. doi: 10.1021/acsomega.2c01763
  • Rathore C, Yadav VK, Amari A, et al. Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light. Front Bioeng Biotechnol. 2024;11:1323249. doi: 10.3389/fbioe.2023.1323249
  • Shi Y, Sun B, Wang X, et al. Solvothermal synthesis and visible photocatalytic activity of Zn0.4Cd0.6S/TiO2/Reduced graphene oxide nanomaterials. Res Appl Mater Sci. 2019;1(1):55–59. doi: 10.33142/msra.v1i1.671
  • Durai SCV, Kumar E, Muthuraj D. Investigations on structural, optical, and impedance spectroscopy studies of titanium dioxide nanoparticles. Bull Chem Soc Eth. 2021;35(1):151–160. doi: 10.4314/bcse.v35i1.13
  • Aravind M, Amalanathan M, Sony MSM. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci. 2021;3(4):409. doi: 10.1007/s42452-021-04281-5
  • Heydari Z, Ghadam P. Biosynthesis of titanium dioxide nanoparticles by the aqueous extract of Juglans regia green husk. Mater Proceed. 2014;14(1):43.
  • Leon A, Reuquen P, Garin C, et al. FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci. 2017;7(1):49. doi: 10.3390/app7010049
  • Ahmad W, Jaiswal KK, Soni S. Green synthesis of titanium dioxide (TiO2) nanoparticles by using mentha arvensis leaves extract and its antimicrobial properties. Inorg Nano-Met Chem. 2020;50(10):1032–1038. doi: 10.1080/24701556.2020.1732419
  • Thamaphat K, Limsuwan P, Ngotawornchai B. Phase characterization of TiO2 powder by XRD and TEM. Nature Sci. 2008;42:357–361.
  • Joni IM, Nulhakim L, Panatarani C. Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor. J Phys Conf Ser. 2018;1080:012042. doi: 10.1088/1742-6596/1080/1/012042
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199(1):344–370. doi:10.1007/s12011-020-02138-3
  • Rajakumar G, Rahuman AA, Roopan SM, et al. Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 2012;91:23–29. doi: 10.1016/j.saa.2012.01.011
  • Shah MP. Combined application of biological-photocatalytic process in degradation of reactive black dye: an excellent outcome. Amer J Microbiol Res. 2013;1(4):92–97. doi: 10.12691/ajmr-1-4-5
  • Thranavel M, Bankole PO, Selvam R, et al. Synergistic effect of biological and advanced oxidation process treatment in the biodegradation of remazol yellow RR dye. Sci Rep. 2020;10(1):20234. doi: 10.1038/s41598-020-77376-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.