1,842
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hybrid fleet capacitated vehicle routing problem with flexible Monte–Carlo Tree search

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2102265 | Received 29 Mar 2022, Accepted 11 Jul 2022, Published online: 03 Aug 2022

References

  • Abdo, A., Edelkamp, S., & Lawo, M. (2016). Nested rollout policy adaptation for optimizing vehicle selection in complex VRPs. In IEEE 41st conference on local computer networks workshops (pp. 213–221). IEEE.
  • Amjadian, A., & Gharaei, A. (2021). An integrated reliable five-level closed-loop supply chain with multi-stage products under quality control and green policies: Generalised outer approximation with exact penalty. International Journal of Systems Science: Operations & Logistics, 1–21. https://doi.org/10.1080/23302674.2021.1919336
  • Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2011). The traveling salesman problem: A computational study, Princeton Series in Applied Mathematics, Princeton University Press.
  • Arneson, B., Hayward, R. B., & Henderson, P. (2010). Monte Carlo Tree search in Hex. IEEE Transactions on Computational Intelligence and AI in Games, 2(4), 251–258. https://doi.org/10.1109/TCIAIG.2010.2067212
  • Askari, R., Sebt, M. V., & Amjadian, A. (2021). A multi-product EPQ model for defective production and inspection with single machine, and operational constraints: Stochastic programming approach. Communications in Computer and Information Science, 1458, 161–193. https://doi.org/10.1007/978-3-030-89743-7
  • Baldacci, R., Toth, P., & Vigo, D. (2010, February). Exact algorithms for routing problems under vehicle capacity constraints. Annals of Operations Research, 175(1), 213–245. https://doi.org/10.1007/s10479-009-0650-0
  • Beresneva, E., & Avdoshin, S. (2018). Analysis of mathematical formulations of capacitated vehicle routing problem and methods for their solution. In Proceedings of the institute for system programming (Vol. 30, pp. 233–250). [Proceedings of the Institute for System Programming of the Russian Academy of Sciences]
  • Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem. Computers & Operations Research, 38(1), 140–151. https://doi.org/10.1016/j.cor.2010.04.008
  • Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of Monte Carlo Tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810
  • Cazenave, T. (2009). Nested Monte-Carlo search. In Proceedings of the 21st international joint conference on artificial intelligence (pp. 456–461). Morgan Kaufmann Publishers Inc.
  • Cazenave, T., Lucas, J. Y., Kim, H., & Triboulet, T. (2020). Monte Carlo vehicle routing. In ATT at ECAI 2020.
  • Chaslot, G. M. B., Winands, M. H., & Herik, H. (2008). Parallel Monte-Carlo Tree search. In International conference on computers and games (pp. 60–71). Springer.
  • Choi, E., & Tcha, D. W. (2007). A column generation approach to the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(7), 2080–2095. https://doi.org/10.1016/j.cor.2005.08.002
  • Comert, S. E., Yazgan, H. R., Kır, S., & Yener, F. (2018). A cluster first-route second approach for a capacitated vehicle routing problem: A case study. International Journal of Procurement Management, 11(4), 399–419. https://doi.org/10.1504/IJPM.2018.092766
  • Coulom, R. (2009). The Monte-Carlo revolution in Go. In The Japanese-French frontiers of science symposium (JFFoS 2008) (Vol. 115).
  • Croes, G. A. (1958). A method for solving Traveling-Salesman problems. Operations Research, 6(6), 791–812. https://doi.org/10.1287/opre.6.6.791
  • Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations Research, 5(2), 266–288. https://doi.org/10.1287/opre.5.2.266
  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. https://doi.org/10.1287/mnsc.6.1.80
  • De Cauwer, C., Verbeke, W., Coosemans, T., Faid, S., & Van Mierlo, J. (2017). A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies, 10(5), 608. https://doi.org/10.3390/en10050608
  • De Jaegere, N., Defraeye, M., & Van Nieuwenhuyse, I. (2014). The vehicle routing problem: State of the art classification and review (FEB Research Report KBI_1415).
  • Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., & Lawo, M. (2016). Monte-Carlo Tree search for logistics. In Commercial transport (pp. 427–440). Springer.
  • Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100–114. https://doi.org/10.1016/j.tre.2011.08.001
  • European Environment Agency (2016). Electric vehicles and the energy sector -- impacts on europe's future emissions. Retrieved May 16, 2022, https://www.eea.europa.eu/publications/electric-vehicles-and-the-energy/
  • Fern, A., & Lewis, P. (2011, March). Ensemble Monte-Carlo planning: An empirical study. In Twenty-First International Conference on Automated Planning and Scheduling.
  • Garn, W. (2020). Closed form distance formula for the balanced multiple travelling salesmen. ArXiV preprint arXiv:2001.07749.
  • Garn, W. (2021). Balanced dynamic multiple travelling salesmen: Algorithms and continuous approximations. Computers & Operations Research, 136, Article 105509. https://doi.org/10.1016/j.cor.2021.105509
  • Geetha, S., Poonthalir, G., & Vanathi, P. (2009). Improved K-Means algorithm for capacitated clustering problem. INFOCOMP Journal of Computer Science, 8(4), 52–59.
  • Gharaei, A., Amjadian, A., & Shavandi, A. (2021). An integrated reliable four-level supply chain with multi-stage products under shortage and stochastic constraints. International Journal of Systems Science: Operations & Logistics, 1–22. https://doi.org/10.1080/23302674.2021.1958023
  • Gharaei, A., Hoseini Shekarabi, S. A., & Karimi, M. (2021). Optimal lot-sizing of an integrated EPQ model with partial backorders and re-workable products: An outer approximation. International Journal of Systems Science: Operations & Logistics, 1–17. https://doi.org/10.1080/23302674.2021.2015007
  • Gharaei, A., Hoseini Shekarabi, S. A., Karimi, M., Pourjavad, E., & Amjadian, A. (2021). An integrated stochastic EPQ model under quality and green policies: Generalised cross decomposition under the separability approach. International Journal of Systems Science: Operations & Logistics, 8(2), 119–131. https://doi.org/10.1080/23302674.2019.1656296
  • Gharaei, A., Karimi, M., & Hoseini Shekarabi, S. A. (2021). Vendor-managed inventory for joint replenishment planning in the integrated qualitative supply chains: Generalised benders decomposition under separability approach. International Journal of Systems Science: Operations & Logistics, 1–15. https://doi.org/10.1080/23302674.2021.1962428
  • Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1
  • Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81–99. https://doi.org/10.1016/j.ejor.2015.01.049
  • Hashimoto, J., Kishimoto, A., Yoshizoe, K., & Ikeda, K. (2012). Accelerated UCT and its application to two-player games. In H. J. van den Herik and A. Plaat (Eds.), Advances in computer games (pp. 1–12). Springer Berlin Heidelberg.
  • Hiermann, G., Hartl, R. F., Puchinger, J., & Vidal, T. (2019). Routing a mix of conventional, plug-in hybrid, and electric vehicles. European Journal of Operational Research, 272(1), 235–248. https://doi.org/10.1016/j.ejor.2018.06.025
  • Justesen, N., Mahlmann, T., Risi, S., & Togelius, J. (2017). Playing multiaction adversarial games: Online evolutionary planning versus tree search. IEEE Transactions on Games, 10(3), 281–291. https://doi.org/10.1109/TCIAIG.2017.2738156
  • Kartal, B., Nunes, E., Godoy, J., & Gini, M. (2016, July). Monte Carlo Tree search with branch and bound for multi-robot task allocation.
  • Kizilateş, G., & Nuriyeva, F. (2013). On the nearest neighbor algorithms for the traveling salesman problem. In Advances in computational science, engineering and information technology (pp. 111–118). Springer International Publishing.
  • Kolmogorov, V. (2009). Blossom V: A new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation, 1(1), 43–67. https://doi.org/10.1007/s12532-009-0002-8
  • Lai, D. S., Demirag, O. C., & Leung, J. M. (2016). A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph. Transportation Research Part E: Logistics and Transportation Review, 86, 32–52. https://doi.org/10.1016/j.tre.2015.12.001
  • Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and distance restrictions. Operations Research, 33(5), 1050–1073. https://doi.org/10.1287/opre.33.5.1050
  • Lebeau, P., De Cauwer, C., Van Mierlo, J., Macharis, C., Verbeke, W., & Coosemans, T. (2015, January). Conventional, hybrid, or electric vehicles: Which technology for an urban distribution centre?. The Scientific World Journal, 2015. https://doi.org/10.1155/2015/302867
  • Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers & Operations Research, 34(9), 2734–2742. https://doi.org/10.1016/j.cor.2005.10.015
  • Lubosch, M., Kunath, M., & Winkler, H. (2018). Industrial scheduling with Monte Carlo Tree search and machine learning. Procedia CIRP, 72, 1283–1287. https://doi.org/10.1016/j.procir.2018.03.171
  • Malinen, M. I., & Fränti, P. (2014). Balanced K-means for clustering. In Joint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR) (pp. 32–41). Springer.
  • Mańdziuk, J. (2010). Knowledge-free and learning-based methods in intelligent game playing (Vol. 276).
  • Mańdziuk, J. (2011). Towards cognitively plausible game playing systems. IEEE Computational Intelligence Magazine, 6(2), 38–51. https://doi.org/10.1109/MCI.2011.940626
  • Mańdziuk, J., & Nejman, C. (2015, June). UCT-based approach to capacitated vehicle routing problem. In Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) (Vol. 9120, pp. 679–690). Springer.
  • Meliani, Y., Hani, Y., Elhaq, S. L., & El Mhamedi, A. (2019). A developed Tabu search algorithm for heterogeneous fleet vehicle routing problem. IFAC-PapersOnLine, 52(13), 1051–1056. https://doi.org/10.1016/j.ifacol.2019.11.334
  • Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2013). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2), 201–232. https://doi.org/10.1007/s10732-011-9186-y
  • Perron, L., & Furnon, V. (2019). OR-Tools. Retrieved May 16, 2022, https://developers.google.com/optimization/.
  • Sbai, I., & Krichen, S. (2022, March). Vehicle routing problems with loading constraints: An overview of variants and solution methods. In Optimization and machine learning (pp. 1–23). John Wiley & Sons.
  • Schneider, M., Stenger, A., & Goeke, D. (2014, March). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520. https://doi.org/10.1287/trsc.2013.0490
  • Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016, January). Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489. https://doi.org/10.1038/nature16961
  • Soejima, Y., Kishimoto, A., & Watanabe, O. (2011, January). Evaluating root parallelization in Go. IEEE Transactions on Computational Intelligence and AI in Games, 2(4), 278–287. https://doi.org/10.1109/TCIAIG.2010.2096427
  • Subramanian, A., Penna, P. H. V., Uchoa, E., & Ochi, L. S. (2012). A hybrid algorithm for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research, 221(2), 285–295. https://doi.org/10.1016/j.ejor.2012.03.016
  • Sutton, R. S., & Barto, A. G (2018). Reinforcement learning: An introduction. A Bradford Book.
  • Taleizadeh, A. A., Safaei, A. Z., Bhattacharya, A., & Amjadian, A. (2022, March). Online peer-to-peer lending platform and supply chain finance decisions and strategies. Annals of Operations Research, 1–31. https://doi.org/10.1007/s10479-022-04648-w
  • Tanabe, Y., Yoshizoe, K., & Imai, H. (2009). A study on security evaluation methodology for image-based biometrics authentication systems. In 2009 IEEE 3rd international conference on biometrics: Theory, applications, and systems (pp. 1–6). IEEE.
  • Tong, B. K. B., Ma, C. M., & Sung, C. W. (2011). A Monte-Carlo approach for the endgame of Ms. Pac-Man. In IEEE conference on computational intelligence and games (pp. 9–15). IEEE.
  • Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017). New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational Research, 257(3), 845–858. https://doi.org/10.1016/j.ejor.2016.08.012
  • United States Environmental Protection Agency (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018. Retrieved May 16, 2022, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990–2018.
  • Venables, W. N., & Ripley, B. D (2013). Modern applied statistics with s-plus. Springer Science & Business Media.
  • Vidal, T. (2022, April). Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood. Computers & Operations Research, 140, Article 105643. https://doi.org/10.1016/j.cor.2021.105643
  • Yuan, Y., Cattaruzza, D., Ogier, M., & Semet, F. (2020). A note on the lifted Miller–Tucker–Zemlin subtour elimination constraints for routing problems with time windows. Operations Research Letters, 48(2), 167–169. https://doi.org/10.1016/j.orl.2020.01.008
  • Zhou, Y., Grygorash, O., & Hain, T. F. (2011). Clustering with minimum spanning trees. International Journal on Artificial Intelligence Tools, 20(01), 139–177. https://doi.org/10.1142/S0218213011000061
  • Zhuang, J., Chu, S. C., Hu, C. C., Liao, L., & Pan, J. S. (2022, March). Advanced phasmatodea population evolution algorithm for capacitated vehicle routing problem. Journal of Advanced Transportation, 2022, 1–20. https://doi.org/10.1155/2022/9241112