186
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective quasi oppositional Jaya algorithm to solve multi-objective solid travelling salesman problem with different aspiration level

ORCID Icon & ORCID Icon
Article: 2127340 | Received 13 Apr 2022, Accepted 17 Sep 2022, Published online: 01 Oct 2022

References

  • Alkafaween, E., Hassanat, A., & A.B.A. (2020). Improving TSP Solutions Using GA with a New Hybrid Mutation Based on Knowledge and Randomness. Communications - Scientific letters of the University of Zilina, 22(3), 128–139. https://doi.org/10.26552/com.C.2020.3.128-139.
  • Beed, R. S., Sarkar, S., Roy, A., & Chatterjee, S. (2017). A study of the genetic algorithm parameters for solving multi-objective travelling salesman problem. In 2017 International conference on information technology (ICIT) (pp. 23–29). IEEE.
  • Bouzid, M., Alaya, I., & Tagina, M. (2021). A new artificial bee colony algorithm using a gradual weight method for the bi-objective traveling salesman problems. Evolutionary Intelligence, 15(3), 1–12. https://doi.org/10.1007/s12065-021-00613-x.
  • Changdar, C., Mahapatra, G. S., & Pal, R. K. (2014). An efficient genetic algorithm for multi-objective solid travelling salesman problem under fuzziness. Swarm and Evolutionary Computation, 15, 27–37. https://doi.org/10.1016/j.swevo.2013.11.001
  • Dhodiya, J. M., & Tailor, A. R. (2016). Genetic algorithm based hybrid approach to solve fuzzy multi-objective assignment problem using exponential membership function. SpringerPlus, 5(1), 1–29. https://doi.org/10.1186/s40064-016-3685-0
  • Dubois, D., & Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30(3), 183–224. https://doi.org/10.1016/0020-0255(83)90025-7
  • Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications. Academic Press.
  • Durillo, J. J., Nebro, A. J., Luna, F., & Alba, E. (2009). On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In International conference on evolutionary multi-criterion optimisation (pp. 183–197). Springer.
  • Fang, L., Chen, P., & Liu, S. (2007). Particle swarm optimization with simulated annealing for TSP. In Proceedings of the 6th WSEAS international conference on artificial intelligence, knowledge engineering and data bases (pp. 206–210).
  • Feng, H. M., & Liao, K. L. (2014). Hybrid evolutionary fuzzy learning scheme in the applications of traveling salesman problems. Information Sciences, 270, 204–225. https://doi.org/10.1016/j.ins.2014.02.098
  • Gupta, P., Mehlawat, M. K., & Mittal, G. (2013). A fuzzy approach to multicriteria assignment problem using exponential membership functions. International Journal of Machine Learning and Cybernetics, 4(6), 647–657. https://doi.org/10.1007/s13042-012-0122-8
  • Harshala, C., & Vivek, B. (2017). Parallel computing approach to solve travelling salesman problem. International Journal of Computer Applications, 157(7), 47–51. https://doi.org/10.5120/ijca2017912780
  • Ishibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2018). How to specify a reference point in hypervolume calculation for fair performance comparison. Evolutionary Computation, 26(3), 411–440. https://doi.org/10.1162/evco_a_00226
  • Jalali, M. R., Afshar, A., & Marino, M. A. (2005). Ant colony optimization algorithm(ACO): a new heuristic approach for engineering optimization. WSEAS Transactions on Information Science and Applications, 2(5), 606–610. ISSN: 1790-0832
  • Khan, I., Maiti, M. K., & Basuli, K. (2020). Multi-objective traveling salesman problem: an ABC approach. Applied Intelligence, 50(11), 3942–3960. https://doi.org/10.1007/s10489-020-01713-4
  • Li, M., Du, W., & Nian, F. (2014). An adaptive particle swarm optimization algorithm based on directed weighted complex network. Mathematical Problems in Engineering, 2014(2), 1–7. https://doi.org/10.1155/2014/434972
  • Liao, Y. F., Yau, D. H., & Chen, C. L. (2012). Evolutionary algorithm to traveling salesman problems. Computers & Mathematics with Applications, 64(5), 788–797. https://doi.org/10.1016/j.camwa.2011.12.018
  • Liu, B., & Iwamura, K. (1998). Chance constrained programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 227–237. https://doi.org/10.1016/S0165-0114(96)00236-9
  • Liu, Z., Zhang, F., Wang, X., Zhao, Q., Zhang, C., Liu, T., & Zhang, B. (2021). A discrete squirrel search optimization based algorithm for bi-objective TSP. Wireless Networks, 1–15. https://doi.org/10.1007/s11276-021-02653-8
  • Lust, T., & Jaszkiewicz, A. (2010). Speed-up techniques for solving large-scale biobjective TSP. Computers & Operations Research, 37(3), 521–533. https://doi.org/10.1016/j.cor.2009.01.005
  • Maity, S., Roy, A., & Maiti, M. (2019). A rough multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem. Granular Computing, 4(1), 125–142. https://doi.org/10.1007/s41066-018-0094-5
  • Majumdar, J., & Bhunia, A. K. (2011). Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. Journal of Computational and Applied Mathematics, 235(9), 3063–3078. https://doi.org/10.1016/j.cam.2010.12.027
  • Mulani, M., & Desai, V. L. (2018). Design and implementation issues in ant colony optimization. International Journal of Applied Engineering Research, 13(16), 1–11. ISSN 0973-4562
  • Pavithra, M., & Ganesan, K. (2019). A simple approach for the solution of fuzzy multi objective travelling salesman problem. In Journal of physics: conference series (Vol. 1377, No. 1, p. 012048). IOP Publishing.
  • Rao, R. V. (2019). Jaya: an advanced optimization algorithm and its engineering applications. Springer.
  • Rao, R. V., More, K., Taler, J., & Oclon, P. (2016). Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Applied Thermal Engineering, 103, 572–582. https://doi.org/10.1016/j.applthermaleng.2016.04.135
  • Rao, R. V., & Rai, D. P. (2017). Optimization of submerged ARC welding process parameters using quasi-oppositional based Jaya algorithm. Journal of Mechanical Science and Technology, 31(5), 2513–2522. https://doi.org/10.1007/s12206-017-0449-x
  • Reinelt, G. (2003). The traveling salesman: computational solutions for TSP applications. Springer.
  • Rodríguez-Zbinden, S., Montero, E., Blázquez, C., & Miranda, P. (2021). A multi-objective iterated local search approach to solve the insular traveling salesman problem. In 2021 IEEE congress on evolutionary computation (CEC) (pp. 2339–2346). IEEE.
  • Samanlioglu, F., Ferrell Jr, W. G., & Kurz, M. E. (2008). A memetic random-key genetic algorithm for a symmetric multi-objective traveling salesman problem. Computers & Industrial Engineering, 55(2), 439–449. https://doi.org/10.1016/j.cie.2008.01.005
  • Samir, M., Roy, A., & Maiti, M. (2015). A modified genetic algorithm for solving uncertain constrained solid travelling salesman problems. Computers & Industrial Engineering, 83, 273–296. https://doi.org/10.1016/j.cie.2015.02.023
  • Tsblib (1997). Last accessed February 19, 1997. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html.
  • Wedyan, A., Whalley, J., & Narayanan, A. (2018). Solving the traveling salesman problem using hydrological cycle algorithm. American Journal of Operations Research, 8(3), 133. https://doi.org/10.4236/ajor.2018.83010
  • Xiaojuan, B., & Liang, Z. (2018). A new genetic algorithm for solving travelling salesman problem. In Proceedings of the 8th WSEAS international conference on applied computer and applied computational science (pp. 451–455).
  • Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1), 3–28. https://doi.org/10.1016/0165-0114(78)90029-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.