197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A user-induced proactive-reactive scheduling tool for dynamic flow-shop environments

, ORCID Icon, &
Article: 2156767 | Received 09 Mar 2022, Accepted 05 Dec 2022, Published online: 22 Dec 2022

REFERENCES

  • Abtahi, Z., Sahraeian, R., & Rahmani, D. (2020). A new approach generating robust and stable schedules in m-machine flow shop scheduling problems: A case study. International Journal of Engineering, Transactions B: Applications, 33(2), 293–303. https://doi.org/10.5829/IJE.2020.33.02B.14
  • Bahroun, Z., Fendouli, M., & Campagne, J.-P. (2008). A new load adjustment approach for job-shops. In J. Arámburo-Lizárraga & A. Ramírez-Treviño (Eds.), Advances in robotics automation and control (pp. 151–170). I-Tech books Croatia.
  • Bahroun, Z., Shamayleh, A., As’ad, R., & Zakaria, R. (2021). Flexible decision support tool for dynamic single machine scheduling problems. Journal of Industrial and Production Engineering, 38(3), 213–238. https://doi.org/10.1080/21681015.2021.1883135
  • Billaut, J.-C., Moukrim, A., & Sanlaville, E. (2008). Flexibility and robustness in scheduling. Wiley Online Library.
  • Bouzekri, H., Bara, N., Alpan, G., & Giard, V. (2022). An integrated decision support system for planning production, storage and bulk port operations in a fertilizer supply chain. International Journal of Production Economics, 252, 108561. https://doi.org/10.1016/j.ijpe.2022.108561
  • Branke, J., & Mattfeld, D. C. (2005). Anticipation and flexibility in dynamic scheduling. International Journal of Production Research, 43(15), 3103–3129. https://doi.org/10.1080/00207540500077140
  • Chaari, T., Chaabane, S., Aissani, N., & Trentesaux, D. (2014, May 1–3). Scheduling under uncertainty: Survey and research directions. 2014 International Conference on Advanced Logistics and Transport (ICALT).
  • Chang, A.-Y., Whitehouse, D. J., Chang, S.-L., & Hsieh, Y.-C. (2001). An approach to the measurement of single-machine flexibility. International Journal of Production Research, 39(8), 1589–1601. https://doi.org/10.1080/00207540010023024
  • Coelho, F., Relvas, S., & Barbosa-Póvoa, A. P. (2021). Simulation-based decision support tool for in-house logistics: The basis for a digital twin. Computers & Industrial Engineering, 153, 107094. https://doi.org/10.1016/j.cie.2020.107094
  • Davenport, A. J., & Beck, J. C. (2000). A survey of techniques for scheduling with uncertainty. Unpublished manuscript. http://tidel.mie.utoronto.ca/publications.php.
  • Dillenseger, F. d. r. (1993). Conception d'un système de planification à moyen terme pour fabrications à la commande INSA Lyon]. WorldCat.org. France.
  • El-Bouri, A., & Nairy, S. (2011). An investigation of cooperative dispatching for minimising mean flowtime in a finite-buffer-capacity dynamic flowshop. International Journal of Production Research, 49(6), 1785–1800. https://doi.org/10.1080/00207540903443253
  • Elyasi, A., & Salmasi, N. (2013). Stochastic flow-shop scheduling with minimizing the expected number of tardy jobs. International Journal of Advanced Manufacturing Technology, 66(1–4), 337–346. https://doi.org/10.1007/s00170-012-4328-4
  • Fang, J., & Xi, Y. G. (1997). A rolling horizon job shop rescheduling strategy in the dynamic environment. International Journal of Advanced Manufacturing Technology, 13(3), 227–232. https://doi.org/10.1007/BF01305874
  • Feng, X., Zheng, F., & Xu, Y. (2016). Robust scheduling of a two-stage hybrid flow shop with uncertain interval processing times. International Journal of Production Research, 54(12), 3706–3717. https://doi.org/10.1080/00207543.2016.1162341
  • Ferreirinha, L., Santos, A. S., Madureira, A. M., Varela, M. L. R., & Bastos, J. A. (2018, December). Decision support tool for dynamic scheduling. In A. Maria Madureira, A. Abraham, N. Gandhi, & M. Leonilde (Eds.), International conference on hybrid intelligent systems (pp. 418–427). Springer.
  • Goli, A., Tirkolaee, E. B., & Soltani, M. (2019). A robust just-in-time flow shop scheduling problem with outsourcing option on subcontractors. Production & Manufacturing Research, 7(1), 294–315. https://doi.org/10.1080/21693277.2019.1620651
  • Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306. https://doi.org/10.1016/j.ejor.2004.04.002
  • Hoogeveen, H., Lente, C., & T'Kindt, V. (2012). Rescheduling for new orders on a single machine with setup times. European Journal of Operational Research, 223(1), 40–46. https://doi.org/10.1016/j.ejor.2012.05.046
  • Hsu, C.-L., Lin, W.-C., Duan, L., Liao, J.-R., Wu, C.-C., & Chen, J.-H. (2020). A robust Two-machine flow-shop scheduling model with scenario-dependent processing times. Discrete Dynamics in Nature and Society, 2020. 3530701. https://doi.org/10.1155/2020/3530701
  • Ivanov, D., Sokolov, B., & Raguinia, E. A. D. (2014). Integrated dynamic scheduling of material flows and distributed information services in collaborative cyber-physical supply networks. International Journal of Systems Science: Operations & Logistics, 1(1), 18–26. https://doi.org/10.1080/00207721.2013.879226
  • Jensen, M. T. (2001). Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures. Applied Soft Computing, 1(1), 35–52. https://doi.org/10.1016/S1568-4946(01)00005-9
  • Kalinowski, K., Krenczyk, D., & Grabowik, C. (2013). Predictive-reactive strategy for real time scheduling of manufacturing systems. Applied Mechanics and Materials, 307, 470–473. https://doi.org/10.4028/www.scientific.net/AMM.307.470
  • Kouvelis, P., & Yu, G. (2013). Robust discrete optimization and its applications (Vol. 14). Springer Science & Business Media.
  • Liu, F., Wang, S., Hong, Y., & Yue, X. (2017). On the robust and stable flowshop scheduling under stochastic and dynamic disruptions. IEEE Transactions on Engineering Management, 64(4), 539–553. https://doi.org/10.1109/TEM.2017.2712611
  • Ning, T., Huang, M., Liang, X., & Jin, H. (2016). A novel dynamic scheduling strategy for solving flexible job-shop problems. Journal of Ambient Intelligence and Humanized Computing, 7(5), 721–729. https://doi.org/10.1007/s12652-016-0370-7
  • Othman, S. B., Zgaya, H., Dotoli, M., & Hammadi, S. (2017). An agent-based decision support system for resources’ scheduling in emergency supply chains. Control Engineering Practice, 59, 27–43. https://doi.org/10.1016/j.conengprac.2016.11.014
  • Oukil, A., & El-Bouri, A. (2021). Ranking dispatching rules in multi-objective dynamic flow shop scheduling: A multi-faceted perspective. International Journal of Production Research, 59(2), 388–411. https://doi.org/10.1080/00207543.2019.1696487
  • Rahmani, D. (2017). A new proactive-reactive approach to hedge against uncertain processing times and unexpected machine failures in the two-machine flow shop scheduling problems. Scientia Iranica, 24(3), 1571–1584. https://doi.org/10.24200/sci.2017.4136
  • Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1–15. https://doi.org/10.1016/j.cie.2003.09.007
  • Seebacher, G., & Winkler, H. (2014). Evaluating flexibility in discrete manufacturing based on performance and efficiency. International Journal of Production Economics, 153, 340–351. https://doi.org/10.1016/j.ijpe.2014.03.018
  • Sels, V., & Vanhoucke, M. (2011, April). A hybrid dual-population genetic algorithm for the single machine maximum lateness problem. In P. Merz & J.-K. Hao (Eds.), European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 14–25). Berlin, Heidelberg: Springer.
  • Shahmoradi-Moghaddam, H., Akbari, K., Sadjadi, S. J., & Heydari, M. (2016). A scenario-based robust optimization approach for batch processing scheduling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2286–2295. https://doi.org/10.1177/0954405415584977
  • Stevenson, Z., Fukasawa, R., & Ricardez-Sandoval, L. (2020). Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant. Journal of Scheduling, 23(3), 397–410. https://doi.org/10.1007/s10951-019-00627-5
  • Suresh, V., & Chaudhuri, D. (1993). Dynamic scheduling—a survey of research. International Journal of Production Economics, 32(1), 53–63. https://doi.org/10.1016/0925-5273(93)90007-8
  • Tadayonirad, S., Seidgar, H., Fazlollahtabar, H., & Shafaei, R. (2019). Robust scheduling in two-stage assembly flow shop problem with random machine breakdowns: Integrated meta-heuristic algorithms and simulation approach. Assembly Automation, 39(5), 944–962. https://doi.org/10.1108/AA-10-2018-0165
  • Teich, E., & Claus, T. (2017). Measurement of load and capacity flexibility in manufacturing. Global Journal of Flexible Systems Management, 18(4), 291–302. https://doi.org/10.1007/s40171-017-0165-5
  • Tirkolaee, E. B., Goli, A., & Weber, G. W. (2020). Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Transactions on Fuzzy Systems, 28(11), 2772–2783. https://doi.org/10.1109/TFUZZ.2020.2998174
  • Turker, A. K., Aktepe, A., Inal, A. F., Ersoz, O. O., Das, G. S., & Birgoren, B. (2019). A decision support system for dynamic job-shop scheduling using real-time data with simulation. Mathematics, 7(3), 278. https://doi.org/10.3390/math7030278
  • Uhlmann, I. R., & Frazzon, E. M. (2018). Production rescheduling review: Opportunities for industrial integration and practical applications. Journal of Manufacturing Systems, 49, 186–193. https://doi.org/10.1016/j.jmsy.2018.10.004
  • Vidal, G. H., Hernández, J. R. C., & Minnaard, C. (2022). Modeling and statistical analysis of complexity in manufacturing systems under flow shop and hybrid environments. The International Journal of Advanced Manufacturing Technology, 118(9), 3049–3058. https://doi.org/10.1007/s00170-021-08028-9
  • Villa, A., & Taurino, T. (2018). Event-driven production scheduling in SME. Production Planning & Control, 29(4), 271–279. https://doi.org/10.1080/09537287.2017.1401143
  • Villalonga, A., Negri, E., Biscardo, G., Castano, F., Haber, R. E., Fumagalli, L., & Macchi, M. (2021). A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annual Reviews in Control, 51, 357–373. https://doi.org/10.1016/j.arcontrol.2021.04.008
  • Wang, D.-J., Liu, F., & Jin, Y. (2019). A proactive scheduling approach to steel rolling process with stochastic machine breakdown. Natural Computing, 18(4), 679–694. https://doi.org/10.1007/s11047-016-9599-5
  • Wang, K., & Choi, S. H. (2012). A decomposition-based approach to flexible flow shop scheduling under machine breakdown. International Journal of Production Research, 50(1), 215–234. https://doi.org/10.1080/00207543.2011.571456
  • Wang, L., Luo, C., & Cai, J. (2017). A variable interval rescheduling strategy for dynamic flexible job shop scheduling problem by improved genetic algorithm. Journal of Advanced Transportation, Article Unsp, 1527858. 1527858. https://doi.org/10.1155/2017/1527858
  • Wilson, J. M. (1989). Alternative formulations of a flow-shop scheduling problem. Journal of the Operational Research Society, 40(4), 395–399. https://doi.org/10.1057/jors.1989.58
  • Wu, C.-C., Gupta, J. N., Cheng, S.-R., Lin, B. M., Yip, S.-H., & Lin, W.-C. (2021). Robust scheduling for a two-stage assembly shop with scenario-dependent processing times. International Journal of Production Research, 59(17), 5372–5387. https://doi.org/10.1080/00207543.2020.1778208
  • Xu, J., & Zhou, X. (2009). A class of multi-objective expected value decision-making model with birandom coefficients and its application to flow shop scheduling problem. Information Sciences, 179(17), 2997–3017. https://doi.org/10.1016/j.ins.2009.04.009
  • Yamamoto, M., & Nof, S. Y. (1985). Scheduling rescheduling in the manufacturing operating system environment. International Journal of Production Research, 23(4), 705–722. https://doi.org/10.1080/00207548508904739
  • Zhang, L., Li, X., Gao, L., & Zhang, G. (2016). Dynamic rescheduling in FMS that is simultaneously considering energy consumption and schedule efficiency. International Journal of Advanced Manufacturing Technology, 87(5–8), 1387–1399. https://doi.org/10.1007/s00170-013-4867-3
  • Zhang, X.-C., & Zhou, H. (2016). Robust scheduling of multi-stage flow shop under machine breakdowns following expect-risk rule. Control and Decision, 31(6), 1087–1092.
  • Zhang, Y., Zhu, H., Tang, D., Zhou, T., & Gui, Y. (2022). Dynamic job shop scheduling based on deep reinforcement learning for multi-agent manufacturing systems. Robotics and Computer-Integrated Manufacturing, 78, 102412. https://doi.org/10.1016/j.rcim.2022.102412
  • Zhou, L., Zhang, L., Sarker, B. R., Laili, Y., & Ren, L. (2018). An event-triggered dynamic scheduling method for randomly arriving tasks in cloud manufacturing. International Journal of Computer Integrated Manufacturing, 31(3), 318–333. https://doi.org/10.1080/0951192X.2017.1413252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.