129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A sustainable modelling for solid waste management using analytical hierarchy process, Monte Carlo simulation and NSGA-III

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2301603 | Received 04 Jul 2022, Accepted 29 Dec 2023, Published online: 16 Jan 2024

References

  • Abdallah, M., Hamdan, S., & Shabib, A. (2021). A multi-objective optimization model for strategic waste management master plans. Journal of Cleaner Production, 284, 124714. https://doi.org/10.1016/j.jclepro.2020.124714
  • Abd Manaf, L., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: Practices and challenges. Waste Management, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008.07.015
  • Abu-Qudais, M. d., & Abu-Qdais, H. A. (2000). Energy content of municipal solid waste in Jordan and its potential utilization. Energy Conversion and Management, 41(9), 983–991. https://doi.org/10.1016/S0196-8904(99)00155-7
  • Akbarpour, N., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., & Oliva, D. (2021). An innovative waste management system in a smart city under stochastic optimization using vehicle routing problem. Soft Computing, 25(8), 6707–6727. https://doi.org/10.1007/s00500-021-05669-6
  • Alam, R., Chowdhury, M., Hasan, G., Karanjit, B., & Shrestha, L. (2008). Generation, storage, collection and transportation of municipal solid waste – A case study in the city of Kathmandu, capital of Nepal. Waste Management, 28(6), 1088–1097. https://doi.org/10.1016/j.wasman.2006.12.024
  • Alinaghian, M., & Goli, A. (2017). Location, allocation and routing of temporary health centers in rural areas in crisis, solved by improved harmony search algorithm. International Journal of Computational Intelligence Systems, 10(1), 894–913. https://doi.org/10.2991/ijcis.2017.10.1.60
  • Andriamanohiarisoamanana, F. J., Matsunami, N., Yamashiro, T., Iwasaki, M., Ihara, I., & Umetsu, K. (2017). High-solids anaerobic mono-digestion of riverbank grass under thermophilic conditions. Journal of Environmental Sciences, 52, 29–38. https://doi.org/10.1016/j.jes.2016.05.005
  • Antizar-Ladislao, B., & Turrion-Gomez, J. L. (2010). Decentralized energy from waste systems. Energies, 3(2), 194–205. https://doi.org/10.3390/en3020194
  • Aracil, C., Haro, P., Giuntoli, J., & Ollero, P. (2017). Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. Journal of Cleaner Production, 142, 2887–2900. https://doi.org/10.1016/j.jclepro.2016.10.181
  • Aremu, A. (2013). In-town tour optimization of conventional mode for municipal solid waste collection. Nigerian Journal of Technology, 32(3), 443–449.
  • Asefi, H., Lim, S., Maghrebi, M., & Shahparvari, S. (2019). Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management. Annals of Operations Research, 273(1-2), 75–110. https://doi.org/10.1007/s10479-018-2912-1
  • Asefi, H., Shahparvari, S., Chettri, P., & Lim, S. (2019). Variable fleet size and mix VRP with fleet heterogeneity in integrated solid waste management. Journal of Cleaner Production, 230, 1376–1395. https://doi.org/10.1016/j.jclepro.2019.04.250
  • Asefi, H., Shahparvari, S., & Chhetri, P. (2019). Integrated Municipal Solid Waste Management under uncertainty: A tri-echelon city logistics and transportation context. Sustainable Cities and Society, 50, 101606. https://doi.org/10.1016/j.scs.2019.101606
  • Asgari, N., Rajabi, M., Jamshidi, M., Khatami, M., & Farahani, R. Z. (2017). A memetic algorithm for a multi-objective obnoxious waste location-routing problem: A case study. Annals of Operations Research, 250(2), 279–308. https://doi.org/10.1007/s10479-016-2248-7
  • Baležentis, T., & Streimikiene, D. (2017). Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Applied Energy, 185, 862–871. https://doi.org/10.1016/j.apenergy.2016.10.085
  • Banuelas, R., & Antony*, J. (2004). Modified analytic hierarchy process to incorporate uncertainty and managerial aspects. International Journal of Production Research, 42(18), 3851–3872. https://doi.org/10.1080/00207540410001699183
  • Bayard, R., de Araújo Morais, J., Ducom, G., Achour, F., Rouez, M., & Gourdon, R. (2010). Assessment of the effectiveness of an industrial unit of mechanical–biological treatment of municipal solid waste. Journal of Hazardous Materials, 175(1-3), 23–32. https://doi.org/10.1016/j.jhazmat.2009.10.049
  • Becker, E., & Jahn, T. (1999). Sustainability and the social sciences: A cross-disciplinary approach to integrating environmental considerations into theoretical reorientation. Zed Books, UNESCO & ISOE.
  • Bing, X., Bloemhof, J. M., Ramos, T. R. P., Barbosa-Povoa, A. P., Wong, C. Y., & van der Vorst, J. G. (2016). Research challenges in municipal solid waste logistics management. Waste Management, 48, 584–592. https://doi.org/10.1016/j.wasman.2015.11.025
  • Bong, C. P. C., Ho, W. S., Hashim, H., Lim, J. S., Ho, C. S., Tan, W. S. P., & Lee, C. T. (2017). Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renewable and Sustainable Energy Reviews, 70, 988–998. https://doi.org/10.1016/j.rser.2016.12.004
  • Bosmans, A., Vanderreydt, I., Geysen, D., & Helsen, L. (2013). The crucial role of waste-to-energy technologies in enhanced landfill mining: A technology review. Journal of Cleaner Production, 55, 10–23. https://doi.org/10.1016/j.jclepro.2012.05.032
  • Bouamoud, B., & Habbani, A. (2015). Survey on multi-objective routing optimization in ad hoc networks: Challenges for green technology. In X. Liu & Y. Li (Eds.), Green services engineering, optimization, and modeling in the technological age (pp. 250–268). IGI Global.
  • Bourtsalas, A. T., Seo, Y., Alam, M. T., & Seo, Y.-C. (2019). The status of waste management and waste to energy for district heating in South Korea. Waste Management, 85, 304–316. https://doi.org/10.1016/j.wasman.2019.01.001
  • Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art classification and review. Computers & Industrial Engineering, 99, 300–313. https://doi.org/10.1016/j.cie.2015.12.007
  • Chen, L., Cong, R.-G., Shu, B., & Mi, Z.-F. (2017). A sustainable biogas model in China: The case study of Beijing Deqingyuan biogas project. Renewable and Sustainable Energy Reviews, 78, 773–779. https://doi.org/10.1016/j.rser.2017.05.027
  • Coates, G., & Rahimifard, S. (2009). Modelling of post-fragmentation waste stream processing within UK shredder facilities. Waste Management, 29(1), 44–53. https://doi.org/10.1016/j.wasman.2008.03.006
  • Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130
  • Dağdeviren, M. (2008). Decision making in equipment selection: An integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing, 19(4), 397–406. https://doi.org/10.1007/s10845-008-0091-7
  • Dalager, S., & Kleis, H. (2004). 100 years of waste incineration in Denmark: From refuse destruction plants to high-technology energy works. Babcock & Wilcox Vølund.
  • D’Alessandro, B., D’Amico, M., Desideri, U., & Fantozzi, F. (2013). The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration. Applied Energy, 101, 423–431. https://doi.org/10.1016/j.apenergy.2012.04.036
  • Damghani, A. M., Savarypour, G., Zand, E., & Deihimfard, R. (2008). Municipal solid waste management in Tehran: Current practices, opportunities and challenges. Waste Management, 28(5), 929–934. https://doi.org/10.1016/j.wasman.2007.06.010
  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. https://doi.org/10.1287/mnsc.6.1.80
  • Das, S., & Bhattacharyya, B. K. (2015). Optimization of municipal solid waste collection and transportation routes. Waste Management, 43, 9–18. https://doi.org/10.1016/j.wasman.2015.06.033
  • Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601. https://doi.org/10.1109/TEVC.2013.2281535
  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
  • Delfani, F., Kazemi, A., SeyedHosseini, S. M., & Niaki, S. T. A. (2021). A novel robust possibilistic programming approach for the hazardous waste location-routing problem considering the risks of transportation and population. International Journal of Systems Science: Operations & Logistics, 8(4), 383–395. https://doi.org/10.1080/23302674.2020.1781954
  • Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014). Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications, 41(1), 156–167. https://doi.org/10.1016/j.eswa.2013.07.018
  • Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27–36. https://doi.org/10.1016/0167-6377(91)90083-2
  • Di Maria, F., Barratta, M., Bianconi, F., Placidi, P., & Passeri, D. (2017). Solid anaerobic digestion batch with liquid digestate recirculation and wet anaerobic digestion of organic waste: Comparison of system performances and identification of microbial guilds. Waste Management, 59, 172–180. https://doi.org/10.1016/j.wasman.2016.10.039
  • Duleba, S., & Moslem, S. (2019). Examining Pareto optimality in analytic hierarchy process on real data: An application in public transport service development. Expert Systems with Applications, 116, 21–30. https://doi.org/10.1016/j.eswa.2018.08.049
  • Edalatpour, M., Mirzapour Al-e-hashem, S., Karimi, B., & Bahli, B. (2018). Investigation on a novel sustainable model for waste management in megacities: A case study in Tehran municipality. Sustainable cities and society, 36, 286–301. https://doi.org/10.1016/j.scs.2017.09.019
  • Ehrgott, M., & Gandibleux, X. (2003). Multiobjective combinatorial optimization—theory, methodology, and applications. In Ehrgott M. & Gandibleux X. (Eds.), Multiple criteria optimization: State of the art annotated bibliographic surveys (pp. 369–444). Springer.
  • Farrokhi-Asl, H., Makui, A., Jabbarzadeh, A., & Barzinpour, F. (2018). Solving a multi-objective sustainable waste collection problem considering a new collection network. Operational Research, 1–39.
  • Fattahi, M., & Govindan, K. (2018). A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study. Transportation Research Part E: Logistics and Transportation Review, 118, 534–567. https://doi.org/10.1016/j.tre.2018.08.008
  • Goli, A., & Keshavarz, T. (2021). Just-in-time scheduling in identical parallel machine sequence-dependent group scheduling problem. Journal of Industrial and Management Optimization, 18(6), 3807–3830.
  • Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Sadeghieh, A., Sasanian, M., & Malekalipour Kordestanizadeh, R. (2021). An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: A case study. Network: Computation in Neural Systems, 32(1), 1–35. https://doi.org/10.1080/0954898X.2020.1849841
  • Goli, A., & Malmir, B. (2020). A covering tour approach for disaster relief locating and routing with fuzzy demand. International Journal of Intelligent Transportation Systems Research, 18(1), 140–152. https://doi.org/10.1007/s13177-019-00185-2
  • Goli, A., & Mohammadi, H. (2022). Developing a sustainable operational management system using hybrid Shapley value and Multimoora method: Case study petrochemical supply chain. Environment, Development and Sustainability, 24(9), 10540–10569. https://doi.org/10.1007/s10668-021-01844-9
  • Goli, A., Zare, H. K., Tavakkoli-Moghaddam, R., & Sadeghieh, A. (2019). Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem case study: The dairy products industry. Computers & Industrial Engineering, 137, 106090. https://doi.org/10.1016/j.cie.2019.106090
  • Goulart Coelho, L. M., Lange, L. C., & Coelho, H. M. (2017). Multi-criteria decision making to support waste management: A critical review of current practices and methods. Waste Management & Research: The Journal for a Sustainable Circular Economy, 35(1), 3–28. https://doi.org/10.1177/0734242X16664024
  • Grzybowski, A. Z. (2016). New results on inconsistency indices and their relationship with the quality of priority vector estimation. Expert Systems with Applications, 43, 197–212. https://doi.org/10.1016/j.eswa.2015.08.049
  • Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Management, 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008
  • Harijani, A. M., Mansour, S., Karimi, B., & Lee, C.-G. (2017). Multi-period sustainable and integrated recycling network for municipal solid waste – A case study in Tehran. Journal of Cleaner Production, 151, 96–108. https://doi.org/10.1016/j.jclepro.2017.03.030
  • Heidari, R., Yazdanparast, R., & Jabbarzadeh, A. (2019). Sustainable design of a municipal solid waste management system considering waste separators: A real-world application. Sustainable Cities and Society, 47, 101457. https://doi.org/10.1016/j.scs.2019.101457
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management (Vol. 15). World Bank.
  • Hosseinalizadeh, R., Izadbakhsh, H., & Shakouri, H. (2021). A planning model for using municipal solid waste management technologies- considering energy, economic, and environmental impacts in Tehran-Iran. Sustainable Cities and Society, 65, 102566. https://doi.org/10.1016/j.scs.2020.102566
  • Hu, H., Li, X., Zhang, Y., Shang, C., & Zhang, S. (2019). Multi-objective location-routing model for hazardous material logistics with traffic restriction constraint in inter-city roads. Computers & Industrial Engineering, 128, 861–876. https://doi.org/10.1016/j.cie.2018.10.044
  • Iaquaniello, G., Centi, G., Salladini, A., Palo, E., & Perathoner, S. (2018). Waste to chemicals for a circular economy. Chemistry – A European Journal, 24(46), 11831–11839. https://doi.org/10.1002/chem.201802903
  • Jiménez, A., Mateos, A., & Ríos-Insua, S. (2005). Monte Carlo simulation techniques in a decision support system for group decision making. Group Decision and Negotiation, 14(2), 109–130. https://doi.org/10.1007/s10726-005-2406-9
  • Kiss, V. M. (2015). Modelling the energy system of Pécs – The first step towards a sustainable city. Energy, 80, 373–387. https://doi.org/10.1016/j.energy.2014.11.079
  • Kordi, G., Hasanzadeh-Moghimi, P., Paydar, M. M., & Asadi-Gangraj, E. (2023). A multi-objective location-routing model for dental waste considering environmental factors. Annals of Operations Research, 328(1), 755–792. https://doi.org/10.1007/s10479-022-04794-1
  • Kumar, A., & Samadder, S. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. https://doi.org/10.1016/j.wasman.2017.08.046
  • Lake, R. J., Cressey, P. J., Campbell, D. M., & Oakley, E. (2010). Risk ranking for foodborne microbial hazards in New Zealand: Burden of disease estimates. Risk Analysis, 30(5), 743–752. https://doi.org/10.1111/j.1539-6924.2009.01269.x
  • Laporte, G., Nobert, Y., & Arpin, D. (1986). An exact algorithm for solving a capacitated location-routing problem. Annals of Operations Research, 6(9), 291–310. https://doi.org/10.1007/BF02023807
  • Laroche, G., Domon, G., Gélinas, N., Doyon, M., & Olivier, A. (2018). Integrating agroforestry intercropping systems in contrasted agricultural landscapes: A SWOT-AHP analysis of stakeholders’ perceptions. Agroforestry Systems, 1–13.
  • Liu, Y., Sun, C., Xia, B., Cui, C., & Coffey, V. (2018). Impact of community engagement on public acceptance towards waste-to-energy incineration projects: Empirical evidence from China. Waste Management, 76, 431–442. https://doi.org/10.1016/j.wasman.2018.02.028
  • Lopion, P., Markewitz, P., Robinius, M., & Stolten, D. (2018). A review of current challenges and trends in energy systems modeling. Renewable and Sustainable Energy Reviews, 96, 156–166. https://doi.org/10.1016/j.rser.2018.07.045
  • Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912–919. https://doi.org/10.1016/j.energy.2006.10.017
  • Madani, K., & Lund, J. R. J. (2011). A Monte-Carlo game theoretic approach for multi-criteria decision making under uncertainty. Advances in Water Resources, 34(5), 607–616. https://doi.org/10.1016/j.advwatres.2011.02.009
  • Makaratzis, A. T., Giannoutakis, K. M., & Tzovaras, D. (2018). Energy modeling in cloud simulation frameworks. Future Generation Computer Systems, 79, 715–725. https://doi.org/10.1016/j.future.2017.06.016
  • Märkälä, M., & Jumpponen, J. (2006). Evaluation of the suitability of AHP in studying transit route selection criteria. Contemporary Research Issues in International Railway Logistics, Research Report, 171, 53–66.
  • Mateos, A., Jiménez, A., & Ríos-Insua, S. (2006). Monte Carlo simulation techniques for group decision making with incomplete information. European Journal of Operational Research, 174(3), 1842–1864. https://doi.org/10.1016/j.ejor.2005.02.057
  • Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4), 326–329. https://doi.org/10.1145/321043.321046
  • Mojtahedi, M., Fathollahi-Fard, A. M., Tavakkoli-Moghaddam, R., & Newton, S. (2021). Sustainable vehicle routing problem for coordinated solid waste management. Journal of Industrial Information Integration, 23, 100220. https://doi.org/10.1016/j.jii.2021.100220
  • Mostbauer, P., Lombardi, L., Olivieri, T., & Lenz, S. (2014). Pilot scale evaluation of the BABIU process – upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste Management, 34(1), 125–133. https://doi.org/10.1016/j.wasman.2013.09.016
  • Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. https://doi.org/10.1016/j.egypro.2017.09.618
  • Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649–672. https://doi.org/10.1016/j.ejor.2006.04.004
  • Nizami, A., Shahzad, K., Rehan, M., Ouda, O., Khan, M., Ismail, I., Almeelbi, T., Basahi, J., & Demirbas, A. (2017). Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Applied Energy, 186, 189–196. https://doi.org/10.1016/j.apenergy.2016.04.116
  • Paul, B. (2021). Reviewing the suitability of thermal technologies for Malaysia’s solid waste management. Journal of Sustainability Science and Management, 16(8), 91–104. https://doi.org/10.46754/jssm.2021.12.007
  • Periathamby, A., Hamid, F. S., & Khidzir, K. (2009). Evolution of solid waste management in Malaysia: Impacts and implications of the solid waste bill, 2007. Journal of Material Cycles and Waste Management, 11(2), 96–103. https://doi.org/10.1007/s10163-008-0231-3
  • Portugal-Pereira, J., & Lee, L. (2016). Economic and environmental benefits of waste-to-energy technologies for debris recovery in disaster-hit Northeast Japan. Journal of Cleaner Production, 112, 4419–4429. https://doi.org/10.1016/j.jclepro.2015.05.083
  • Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1–17. https://doi.org/10.1016/j.ejor.2014.01.005
  • Putna, O., Janošťák, F., Šomplák, R., & Pavlas, M. (2018). Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant. Energy, 163, 1125–1139. https://doi.org/10.1016/j.energy.2018.08.059
  • Rabbani, M., Heidari, R., Farrokhi-Asl, H., & Rahimi, N. (2018). Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. Journal of Cleaner Production, 170, 227–241. https://doi.org/10.1016/j.jclepro.2017.09.029
  • Rabbani, M., Heidari, R., & Yazdanparast, R. (2019). A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. European Journal of Operational Research, 272(3), 945–961. https://doi.org/10.1016/j.ejor.2018.07.024
  • Ramachandra, T., Bharath, H., Kulkarni, G., & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, 1122–1136. https://doi.org/10.1016/j.rser.2017.09.085
  • Rathore, P., & Sarmah, S. (2019). Modeling transfer station locations considering source separation of solid waste in urban centers: A case study of Bilaspur city, India. Journal of Cleaner Production, 211, 44–60. https://doi.org/10.1016/j.jclepro.2018.11.100
  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
  • Saaty, T. L. (1988). What is the analytic hierarchy process?. In Mitra G., Greenberg H.J., Lootsma F.A., Rijkaert M.J., & Zimmermann H.J. (Eds.), Mathematical models for decision support (pp. 109–121). Springer.
  • Sadeghi Ahangar, S., Sadati, A., & Rabbani, M. (2021). Sustainable design of a municipal solid waste management system in an integrated closed-loop supply chain network using a fuzzy approach: A case study. Journal of Industrial and Production Engineering, 38(5), 323–340. https://doi.org/10.1080/21681015.2021.1891146
  • Schaller, N. (1993). The concept of agricultural sustainability. Agriculture, Ecosystems & Environment, 46(1-4), 89–97. https://doi.org/10.1016/0167-8809(93)90016-I
  • Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189. https://doi.org/10.1016/j.enpol.2008.08.016
  • Shi, J., Chen, W., Zhou, Z., & Zhang, G. (2019). A bi-objective multi-period facility location problem for household e-waste collection. International Journal of Production Research, 1–20.
  • Shimbar, A., & Ebrahimi, S. B. (2017). The application of DNPV to unlock foreign direct investment in waste-to-energy in developing countries. Energy, 132, 186–193. https://doi.org/10.1016/j.energy.2017.05.098
  • Simoni, M. D., Bujanovic, P., Boyles, S. D., & Kutanoglu, E. (2018). Urban consolidation solutions for parcel delivery considering location, fleet and route choice. Case Studies on Transport Policy, 6(1), 112–124. https://doi.org/10.1016/j.cstp.2017.11.002
  • Somsen, J. (2005). Regulating modern biotechnology in a global risk society: Challenges for science, law and society. Amsterdam University Press.
  • Tan, S., Hashim, H., Lee, C., Taib, M. R., & Yan, J. (2014). Economical and environmental impact of waste-to-energy (WTE) alternatives for waste incineration, landfill and anaerobic digestion. Energy Procedia, 61, 704–708. https://doi.org/10.1016/j.egypro.2014.11.947
  • Tan, S. T., Ho, W. S., Hashim, H., Lee, C. T., Taib, M. R., & Ho, C. S. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Conversion and Management, 102, 111–120. https://doi.org/10.1016/j.enconman.2015.02.010
  • Taşkın, A., & Demir, N. (2020). Life cycle environmental and energy impact assessment of sustainable urban municipal solid waste collection and transportation strategies. Sustainable Cities and Society, 61, 102339. https://doi.org/10.1016/j.scs.2020.102339
  • Ten Hoeve, M., Bruun, S., Naroznova, I., Lemming, C., Magid, J., Jensen, L. S., & Scheutz, C. (2018). Life cycle inventory modeling of phosphorus substitution, losses and crop uptake after land application of organic waste products. The International Journal of Life Cycle Assessment, 23(10), 1950–1965. https://doi.org/10.1007/s11367-017-1421-9
  • Themelis, N. J., & Ulloa, P. A. (2007). Methane generation in landfills. Renewable Energy, 32(7), 1243–1257. https://doi.org/10.1016/j.renene.2006.04.020
  • Tirkolaee, E. B., Goli, A., Ghasemi, P., & Goodarzian, F. (2022). Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: Pareto-based algorithms. Journal of Cleaner Production, 333, 130056. https://doi.org/10.1016/j.jclepro.2021.130056
  • Tomić, T., Dominković, D. F., Pfeifer, A., Schneider, D. R., Pedersen, A. S., & Duić, N. (2017). Waste to energy plant operation under the influence of market and legislation conditioned changes. Energy, 137, 1119–1129. https://doi.org/10.1016/j.energy.2017.04.080
  • Tran, T. H., Nguyen, T. B. T., Le, H. S. T., & Phung, D. C. (2024). Formulation and solution technique for agricultural waste collection and transport network design. European Journal of Operational Research, 313(3), 1152–1169. https://doi.org/10.1016/j.ejor.2023.08.052
  • Troldborg, M., Heslop, S., & Hough, R. L. (2014). Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties. Renewable and Sustainable Energy Reviews, 39, 1173–1184. https://doi.org/10.1016/j.rser.2014.07.160
  • Troschinetz, A. M., & Mihelcic, J. R. (2009). Sustainable recycling of municipal solid waste in developing countries. Waste Management, 29(2), 915–923. https://doi.org/10.1016/j.wasman.2008.04.016
  • Victor, D., & Agamuthu, P. (2013). Strategic environmental assessment policy integration model for solid waste management in Malaysia. Environmental Science & Policy, 33, 233–245. https://doi.org/10.1016/j.envsci.2013.06.008
  • Wang, X., Xie, B., Wu, D., Hassan, M., & Huang, C. (2015). Characteristics and risks of secondary pollutants generation during compression and transfer of municipal solid waste in Shanghai. Waste Management, 43, 1–8. https://doi.org/10.1016/j.wasman.2015.07.005
  • Wheeler, J., Páez, M., Guillén-Gosálbez, G., & Mele, F. D. (2018). Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains. Computers & Chemical Engineering, 113, 11–31. https://doi.org/10.1016/j.compchemeng.2018.02.010
  • Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39(7), 1419–1431. https://doi.org/10.1016/j.cor.2011.08.013
  • Yildiz, H., Johnson, M. P., & Roehrig, S. (2013). Planning for meals-on-wheels: Algorithms and application. Journal of the Operational Research Society, 64(10), 1540–1550. https://doi.org/10.1057/jors.2012.129
  • Zhang, J., Kan, X., Shen, Y., Loh, K.-C., Wang, C.-H., Dai, Y., & Tong, Y. W. (2018). A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment. Energy, 152, 214–222. https://doi.org/10.1016/j.energy.2018.03.143
  • Zhao, J., & Ke, G. Y. (2017). Incorporating inventory risks in location-routing models for explosive waste management. International Journal of Production Economics, 193, 123–136. https://doi.org/10.1016/j.ijpe.2017.07.001
  • Zhao, J., & Zhu, F. (2016). A multi-depot vehicle-routing model for the explosive waste recycling. International Journal of Production Research, 54(2), 550–563. https://doi.org/10.1080/00207543.2015.1111533
  • Zhou, Aimin, Qu, Bo-Yang, Li, Hui, Zhao, Shi-Zheng, Suganthan, Ponnuthurai Nagaratnam, & Zhang, Qingfu. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32–49. https://doi.org/10.1016/j.swevo.2011.03.001
  • Zhu, Q.-X., Zhang, C., He, Y.-L., & Xu, Y. (2018). Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry. Applied Energy, 213, 322–333. https://doi.org/10.1016/j.apenergy.2018.01.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.