62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bi-objective model for tactical planning in corn supply chain considering CO2 balance

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2337442 | Received 14 Sep 2023, Accepted 27 Mar 2024, Published online: 30 Apr 2024

References

  • Akgul, A., & Ulusam Seókiner, S. (2019). Optimization of biomass to bioenergy supply chain with tri-generation and district heating and cooling network systems. Computers and Industrial Engineering, 137, 106017https://doi.org/10.1016/j.cie.2019.106017
  • Aliano Filho, A. (2023). Brazilian corn supply chain project. https://github.com/angeloaliano/Corn-Problem
  • Aliano Filho, A., Cantane, D. R., Isler, P., & Florentino, H.O. (2023). An integrated multi-objective mathematical model for sugarcane harvesting considering cumulative degree-days. Expert Systems with Applications, 232, Article 120881. https://doi.org/10.1016/j.eswa.2023.120881
  • Aliano Filho, A., Melo, T., & Pato, M.V. (2021). A bi-objective mathematical model for integrated planning of sugarcane harvesting and transport operations. Computers & Operations Research, 134, Article 105419. https://doi.org/10.1016/j.cor.2021.105419
  • Aliano Filho, A., Moretti, A. C., Pato, M. V., & Alves de Oliveira, W. (2021). An exact scalarization method with multiple reference points for bi-objective integer linear optimization problems. Annals of Operations Research, 296(1–2), 35–69. https://doi.org/10.1007/s10479-019-03317-9
  • Aliano Filho, A., Oliveira, W. A., & Melo, T. (2023). Multi-objective optimization for integrated sugarcane cultivation and harvesting planning. European Journal of Operational Research, 309(1), 330–344. https://doi.org/10.1016/j.ejor.2022.12.029
  • Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369–384. https://doi.org/10.1016/j.cor.2016.10.012
  • Almeida, M., Amaral, M., & Morabito, R. (2016). Um estudo sobre localização de terminais intermodais na rede de escoamento da soja brasileira. Production, 26(3), 562–580. https://doi.org/10.1590/0103-6513.144513
  • Alves, M. J., & Henggeler Antunes, C. (2022). A new exact method for linear bilevel problems with multiple objective functions at the lower level. European Journal of Operational Research, 303(1), 312–327. https://doi.org/10.1016/j.ejor.2022.02.047
  • Amaral, M., Almeida, M., & Morabito, R. (2012). Um modelo de fluxos e localização de terminais intermodais para escoamento da soja brasileira destinada à exportação. Gestão & Produção, 19, 717–732.
  • Amonkar, R., Roy, V., & Patnaik, D. (2021). Intermodal service supply chain and seaport logistics performance. Supply Chain Forum: An International Journal, 22(2), 171–187. https://doi.org/10.1080/16258312.2021.1895677
  • ANTAQ. (2022). Agência Nacional de Transportes Aquaviários. Retrieved November 20, 2022, from https://www.gov.br/antaq/pt-br
  • ANTF. (2022). Agência Nacional de Transportes Ferroviários. Retrieved November 10, 2022, from https://www.antf.org.br/
  • ANTT. (2022). Agência Nacional de Transportes Terrestres. Retrieved November 20, 2022, from https://www.antt.gov.br
  • Arnold, P., Peeters, D., & Thomas, I. (2004). Modelling a rail/road intermodal transportation system. Transportation Research Part E: Logistics and Transportation Review, 40(3), 255–270. https://doi.org/10.1016/j.tre.2003.08.005
  • Asha, L. N., Dey, A., Yodo, N., & Aragon, L. G. (2022). Optimization approaches for multiple conflicting objectives in sustainable green supply chain management. Sustainability, 14(19), Article 12790. https://doi.org/10.3390/su141912790
  • Baghizadeh, K., Cheikhrouhou, N., Govindan, K., & Ziyarati, M. (2022). Sustainable agriculture supply chain network design considering water-energy-food nexus using queuing system: A hybrid robust possibilistic programming. Natural Resource Modeling, 35(1), e12337. https://doi.org/10.1111/nrm.v35.1
  • Bauer, J., Bektaş, T., & Gabriel Crainic, T. (2010). Minimizing greenhouse gas emissions in intermodal freight transport: An application to rail service design. Journal of the Operational Research Society, 61(3), 530–542. https://doi.org/10.1057/jors.2009.102
  • Benjaafar, S., Li, Y., & Daskin, M. (2012). Carbon footprint and the management of supply chains: Insights from simple models. IEEE Transactions on Automation Science and Engineering, 10(1), 99–116. https://doi.org/10.1109/TASE.2012.2203304
  • Bernardi, A., Giarola, S., & Bezzo, F. (2013). Spatially explicit multiobjective optimization for the strategic design of first and second generation biorefineries including carbon and water footprints. Industrial & Engineering Chemistry Research, 52(22), 7170–7180. https://doi.org/10.1021/ie302442j
  • Bernoux, M., Cerri, C. C, Cerri, C. E. P, Neto, M. S., Metay, A., Perrin, A.-S., Scopel, E., Tantely, R., Blavet, D., de Piccolo, M. C., & Pavei, M. (2009). Cropping systems, carbon sequestration and erosion in Brazil: A review. Sustainable Agriculture, 1, 75–85. https://doi.org/10.1007/978-90-481-2666-8
  • Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671
  • Bilgen, B, & Ozkarahan, I. (2007). A mixed-integer linear programming model for bulk grain blending and shipping. International Journal of Production Economics, 107(2), 555–571. https://doi.org/10.1016/j.ijpe.2006.11.008
  • Bortolini, M, Calabrese, F., Galizia, F. G., & Mora, C. (2022). A three-objective optimization model for mid-term sustainable supply chain network design. Computers & Industrial Engineering, 168, Article 108131. https://doi.org/10.1016/j.cie.2022.108131
  • Bouzaher, A., & Offutt, S. (1992). A stochastic linear programming model for corn residue production. Journal of the Operational Research Society, 43(9), 843–857. https://doi.org/10.1057/jors.1992.124
  • Branco, J. E. H., Bartholomeu, D. B., Junior, P. N. Alves, & Filho, J. V. Caixeta (2020). Evaluation of the economic and environmental impacts from the addition of new railways to the brazilian's transportation network: An application of a network equilibrium model. Transport Policy, 124, 61–69. https://doi.org/10.1016/j.tranpol.2020.03.011
  • Busato, P., Sopegno, A., Pampuro, N., Sartori, L., & Berruto, R. (2019). Optimisation tool for logistics operations in silage production. Biosystems Engineering, 180, 146–160. https://doi.org/10.1016/j.biosystemseng.2019.01.008
  • Cambra-Fierro, J., & Ruiz-Benitez, R. (2009). Advantages of intermodal logistics platforms: Insights from a spanish platform. Supply Chain Management: An International Journal, 14(6), 418–421. https://doi.org/10.1108/13598540910995183
  • Capineri, C., & T. R. Leinbach (2004). Globalization, e-economy and trade. Transport Reviews, 24(6), 645–663. https://doi.org/10.1080/0144164042000292443
  • CEPEA. (2022). Centro de Estudos Avanóados em Economia Aplicada. Retrieved November 15, 2022, from www.cepea.esalq.usp.br.
  • Chávez, M. M. M., Sarache, W., & Costa., Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116, 136–162. https://doi.org/10.1016/j.tre.2018.06.001
  • Cheraghalipour, A., Paydar, M. M., & Hajiaghaei-Keshteli., M. (2019). Designing and solving a bi-level model for rice supply chain using the evolutionary algorithms. Computers and Electronics in Agriculture, 162, 651–668. https://doi.org/10.1016/j.compag.2019.04.041
  • Clay, D. E., Chang, J., Clay, S. A., Stone, J., Gelderman, R. H., Carlson, G. C., Reitsma, K., Jones, M., Janssen, L., & Schumacher., T. (2012). Corn yields and no-tillage affects carbon sequestration and carbon footprints. Agronomy Journal, 104(3), 763–770. https://doi.org/10.2134/agronj2011.0353
  • CNT. (2022). Esquisa CNT do Transporte Aquaviário – Navegaóão Interior. Confederaóão Nacional de Transportes, Brasília, Brasil. Retrieved October 14, 2022, from https://www.cnt.org.br/Paginas/Pesquisas_Detalhes.aspx?p=4
  • CNT. (2022). Pesquisa CNT de Ferrovias. Confederaóão Nacional de Transportes, Brasília. Retrieved October 14, 2022, from https://www.cnt.org.br/Paginas/Pesquisas_Detalhes.aspx?p=7
  • Cobuloglu, H. I., & Büyüktahtakın, İ. (2017). A two-stage stochastic mixed-integer programming approach to the competition of biofuel and food production. Computers & Industrial Engineering, 107, 251–263. https://doi.org/10.1016/j.cie.2017.02.017
  • CONAB. (2022). Companhia Nacional de Abastecimento e Unidades Armazenadoras da Conab. Retrieved October 15, 2022, from https://www.conab.gov.br/index.php/armazenagem/rede-armazenadora-da-conab/unidades-armazenadoras-da-conab
  • CONAB. (2023). Companhia Nacional de Abastecimento e Unidades Armazenadoras da Conab. 6o Levantamento. Retrieved January 31, 2023, from https://www.conab.gov.br/info-agro/safras/graos
  • COOPERPONTA. (2022). Cooperativa Agrícola Pontagrossense.’ Retrieved November 8, 2022, from https://www.cooperponta.com.br/
  • Costa Junior, C., Corbeels, M., Bernoux, M., Cassia Piccolo, M. de, Neto, M. S., Feigl, B. J., Cerri, C. E. P., Clemente Cerri, C., Scopel, E., & Lal, R. (2013). Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches. Soil and Tillage Research, 134, 207–212. https://doi.org/10.1016/j.still.2013.08.010
  • Cruz, J. C., Henrique da Silva, G., Pereira Filho, I. A., Neto, M. M., & P. C. Gontijo Magalhaes (2010). Caracterizaóão do cultivo de milho safrinha de alta produtividade em 2008 e 2009.
  • Dal-Mas, M., Giarola, S., Zamboni, A., & Bezzo., F. (2011). Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35(5), 2059–2071. https://doi.org/10.1016/j.biombioe.2011.01.060
  • d'Amore, F., & Bezzo, F. (2016). Strategic optimisation of biomass-based energy supply chains for sustainable mobility. Computers and Chemical Engineering, 87, 68–81. https://doi.org/10.1016/j.compchemeng.2016.01.003
  • D'amours, S., Rönnqvist, M., & Weintraub, A. (2008). Using operational research for supply chain planning in the forest products industry. INFOR, 46(4), 265–281.
  • Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3–34). Springer.
  • Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics – an overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679. https://doi.org/10.1016/j.ejor.2011.11.010Cited By 579
  • Demir, E., Bektaş, T., & Laporte, G. (2011). A comparative analysis of several vehicle emission models for road freight transportation. Transportation Research Part D: Transport and Environment, 16(5), 347–357. https://doi.org/10.1016/j.trd.2011.01.011
  • Demir, E., Burgholzer, W., Hrušovsky, M., Arıkan, E., Jammernegg, W., & Van Woensel, T. (2016). A green intermodal service network design problem with travel time uncertainty. Transportation Research Part B: Methodological, 93, 789–807. https://doi.org/10.1016/j.trb.2015.09.007
  • Doliente, S. S., & Samsatli, S. (2021). Integrated production of food, energy, fuels and chemicals from rice crops: Multi-objective optimisation for efficient and sustainable value chains. Journal of Cleaner Production, 285, 124900. https://doi.org/10.1016/j.jclepro.2020.124900
  • Dunning, I., Huchette, J., & Lubin., M. (2017). JuMP: A modeling language for mathematical optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575
  • EMBRAPA. (2022). Caminhos da safra da produóão e exportaóão de grãos. Retrieved October 7, 2022, from https://www.embrapa.br/macrologistica/caminhos-da-safra
  • Epicoco, N., & Falagario, M. (2022). Decision support tools for developing sustainable transportation systems in the EU: A review of research needs, barriers, and trends. Research in Transportation Business & Management, 43, 100819. https://doi.org/10.1016/j.rtbm.2022.100819
  • Esteso, A., Alemany, M. M. E., Ortiz, Á., & Iannacone, R. (2022). Crop planting and harvesting planning: Conceptual framework and sustainable multi–objective optimization for plants with variable molecule concentrations and minimum time between harvests. Applied Mathematical Modelling, 112, 136–155. https://doi.org/10.1016/j.apm.2022.07.023
  • FAO. (2022). Emissions due to agriculture: Global, regional and country trends.
  • Faria, C. H. F., Almeida, J. F. F., & Pinto, L. R. (2024). Simulation–optimisation approach for sustainable planning of intermodal logistics in the Brazilian grain export industry. Decision Analytics Journal, 10, 100388. https://doi.org/10.1016/j.dajour.2023.100388
  • Feller, C., & Bernoux., M. (2008). Historical advances in the study of global terrestrial soil organic carbon sequestration. Waste Management, 28(4), 734–740. https://doi.org/10.1016/j.wasman.2007.09.022
  • Figliozzi, M. A. (2020). Carbon emissions reductions in last mile and grocery deliveries utilizing air and ground autonomous vehicles. Transportation Research Part D: Transport and Environment, 85, 102443. https://doi.org/10.1016/j.trd.2020.102443
  • Gharye Mirzaei, M., Goodarzian, F., Maddah, S., Abraham, A., & Gabralla, L. A. (2022). Investigating a dual-channel network in a sustainable closed-loop supply chain considering energy sources and consumption tax. Sensors, 22(9), 3547. https://doi.org/10.3390/s22093547
  • Gholamian, M. R., & Taghanzadeh, A. H. (2017). Integrated network design of wheat supply chain: A real case of Iran. Computers and Electronics in Agriculture, 140, 139–147. https://doi.org/10.1016/j.compag.2017.05.038
  • Gholian-Jouybari, F., Hashemi-Amiri, O., Mosallanezhad, B., & Hajiaghaei-Keshteli, M. (2023). Metaheuristic algorithms for a sustainable agri-food supply chain considering marketing practices under uncertainty. Expert Systems with Applications, 213, 118880. https://doi.org/10.1016/j.eswa.2022.118880
  • Gonela, V., Zhang, J., Osmani, A., & Onyeaghal, R. (2015). Stochastic optimization of sustainable hybrid generation bioethanol supply chains. Transportation Research Part E: Logistics and Transportation Review, 77, 1–28. https://doi.org/10.1016/j.tre.2015.02.008
  • Goodarzian, F., Kumar, V., & Ghasemi, P. (2022). Investigating a citrus fruit supply chain network considering CO2 emissions using meta-heuristic algorithms. Annals of Operations Research, 1–55.
  • Google. (2023). Google maps. Retrieved October 15, 2022, from https://www.google.com.br/maps
  • Guillén-Gosálbez, G., Mele, F. D., & Grossmann, I. E. (2010). A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use. AIChE Journal, 56(3), 650–667. https://doi.org/10.1002/aic.v56:3
  • Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242. https://doi.org/10.1080/23311916.2018.1502242
  • Gurobi Optimization, LLC. (2022). Gurobi optimizer reference manual. https://www.gurobi.com
  • Harris, I., Naim, M., Palmer, A., Potter, A., & Mumford., C. (2011). Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions. International Journal of Production Economics, 131(1), 313–321. https://doi.org/10.1016/j.ijpe.2010.03.005
  • Hosseini-Motlagh, S.-M., Samani, M. R. G., & Saadi, F. A. (2021). Strategic optimization of wheat supply chain network under uncertainty: A real case study. Operational Research, 21(3), 1487–1527. https://doi.org/10.1007/s12351-019-00515-y
  • Huang, E., Zhang, X., Rodriguez, L., Khanna, M., de Jong, S., Ting, K. C., Ying, Y., & Lin., T. (2019). Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in midwestern US. Renewable and Sustainable Energy Reviews, 115, 109403. https://doi.org/10.1016/j.rser.2019.109403
  • IBGE. (2022). Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal: área plantada, produção e produtividade de milho, 2018–2022. Retrieved November 20, 2022, from https://sidra.ibge.gov.br/tabela/5457
  • Ilgin, M. A., & Gupta., S. M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 91(3), 563–591. https://doi.org/10.1016/j.jenvman.2009.09.037
  • Jaržemskis, A. (2007). Research on public logistics centre as tool for cooperation. Transport, 22(1), 50–54. https://doi.org/10.3846/16484142.2007.9638096
  • Junqueira, R., & Morabito, R. (2006). Um modelo de otimização linear para o planejamento agregado da produção e logística de sementes de milho. Production, 16(3), 510–525. https://doi.org/10.1590/S0103-65132006000300012
  • Junqueira, R., & Morabito, R. (2008). Planejamento otimizado da produção e logística de empresas produtoras de sementes de milho: Um estudo de caso. Gestão & Produção, 15, 367–380.
  • Junqueira, R., & Morabito, R. (2012). Production and logistics planning considering circulation taxes in a multi-plant seed corn company. Computers and Electronics in Agriculture, 84, 100–110. https://doi.org/10.1016/j.compag.2012.02.019
  • Kannegiesser, M., & Günther, H.-O. (2014). Sustainable development of global supply chains – part 1: Sustainability optimization framework. Flexible Services and Manufacturing Journal, 26(1-2), 24–47. https://doi.org/10.1007/s10696-013-9176-5
  • Kantas, A. B., Cobuloglu, H. I., & Büyüktahtakιn, İ. (2015). Multi-source capacitated lot-sizing for economically viable and clean biofuel production. Journal of Cleaner Production, 94, 116–129. https://doi.org/10.1016/j.jclepro.2015.02.001
  • Khalilzadeh, Z., & Wang, L. (2022). Corn planting and harvest scheduling under storage capacity and growing degree units uncertainty. Scientific Reports, 12(1), 22482. https://doi.org/10.1038/s41598-022-25797-9
  • Khorramdel, S., Koocheki, A., Mahallati, M. N., Khorasani, R., & Ghorbani, R. (2013). Evaluation of carbon sequestration potential in corn fields with different management systems. Soil and Tillage Research, 133, 25–31. https://doi.org/10.1016/j.still.2013.04.008
  • Krishnan, R., Arshinder, K., & Agarwal, R. (2022). Robust optimization of sustainable food supply chain network considering food waste valorization and supply uncertainty. Computers & Industrial Engineering, 171, 108499. https://doi.org/10.1016/j.cie.2022.108499
  • Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169(3), 932–942. https://doi.org/10.1016/j.ejor.2004.08.029
  • León-Olivares, E., Minor-Popocatl, H., Aguilar-Mejía, O., & Sánchez-Partida, D. (2020). Optimization of the supply chain in the production of ethanol from agricultural biomass using mixed-Integer linear programming (MILP): A case study. Mathematical Problems in Engineering, 2020, 1–25. https://doi.org/10.1155/2020/6029507
  • Li, J., Fang, Y., & Yang, J. (2022). Minimizing carbon emissions of the rice supply chain considering the size of deep tillage lands. Sustainable Production and Consumption, 29, 744–760. https://doi.org/10.1016/j.spc.2021.11.022
  • Li, Q., & Hu, G. (2014). Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification. Energy, 74, 576–584. https://doi.org/10.1016/j.energy.2014.07.023
  • Li, Y., Hu, G., & Wright, M. M. (2015). An optimization model for sequential fast pyrolysis facility location-allocation under renewable fuel standard. Energy, 93, 1165–1172. https://doi.org/10.1016/j.energy.2015.09.090
  • Liotta, G., Stecca, G., & Kaihara, T. (2015). Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, 351–365. https://doi.org/10.1016/j.ijpe.2014.12.016
  • Liu, Y., & Feng, C. (2020). Decouple transport CO2 emissions from China's economic expansion: A temporal-spatial analysis. Transportation Research Part D: Transport and Environment, 79, 102225. https://doi.org/10.1016/j.trd.2020.102225
  • Lodree, E.J., & Taskin, S. (2008). An insurance risk management framework for disaster relief and supply chain disruption inventory planning. Journal of the Operational Research Society, 59(5), 674–684. https://doi.org/10.1057/palgrave.jors.2602377
  • Lopes, B. F. R., & de Oliveira, A. L. R. (2017). The supply chain of brazilian maize: Application of a partial equilibrium model. Bulgarian Journal of Agricultural Science, 23(5), 717–728.
  • Manupati, V. K., Jedidah, S. J., Gupta, S., Bhandari, A., & Ramkumar, M. (2019). Optimization of a multi-echelon sustainable production-distribution supply chain system with lead time consideration under carbon emission policies. Computers & Industrial Engineering, 135, 1312–1323. https://doi.org/10.1016/j.cie.2018.10.010
  • Marins, L., Morabito, R., & Rocco, C. D. (2024). Modelling and optimizing the tactical planning of the corn supply chain considering domestic and export markets. Pesquisa Operacional, 44, e273457. https://doi.org/10.1590/0101-7438.2023.043.00273457
  • Marins, L. B. C. (2021). Modelos de otimização para a cadeia de suprimentos de milho considerando mercado interno e exportação. Master's dissertation in production engineering at Federal University of São Carlos (Ufscar).
  • Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455–465. https://doi.org/10.1016/j.amc.2009.03.037
  • Mavrotas, G., & Florios, K. (2013). An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 219(18), 9652–9669. https://doi.org/10.1016/j.amc.2013.03.002
  • Mazzetto, F., Ortiz-Gutiérrez, R. A., Manca, D., & Bezzo, F. (2013). Strategic design of bioethanol supply chains including commodity market dynamics. Industrial & Engineering Chemistry Research, 52(30), 10305–10316. https://doi.org/10.1021/ie401226w
  • Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multiobjective model for more sustainable fuel supply chains. A case study of the sugar cane industry in argentina. Industrial and Engineering Chemistry Research, 50(9), 4939–4958. https://doi.org/10.1021/ie101400g
  • Mello, A. V., Schardong, A., & Pedrotti, A. (2013). Multi-objective analysis applied to an irrigated agricultural system on oxisols. Transactions of the ASABE, 56(1), 71–82. https://doi.org/10.13031/2013.42591
  • Mingjian, Z., Kuo, W., & McRoberts, K. L. (1991). Application of mathematical programming to a large-scale agricultural production and distribution system. Journal of the Operational Research Society, 42(8), 639–648. https://doi.org/10.1057/jors.1991.130
  • Miranda, R. A., de O Duarte, J., Garcia, J. C., & Duraes, F. O. M. (2021). Sustentabilidade da cadeia produtiva do milho.
  • Mogale, D. G., Ghadge, A., Krishna Kumar, S., & Tiwari., M. K. (2020). Modelling supply chain network for procurement of food grains in India. International Journal of Production Research, 58(21), 6493–6512. https://doi.org/10.1080/00207543.2019.1682707
  • Mota, M. M., Makhloufi, A. E., & Scala., P. (2019). On the logistics of cocoa supply chain in Côte d'Ivoire: Simulation-based analysis. Computers & Industrial Engineering, 137, 106034. https://doi.org/10.1016/j.cie.2019.106034
  • Ng, R. T. L., Kurniawan, D., Wang, H., Mariska, B., Wu, W., & Maravelias., C. T. (2018). Integrated framework for designing spatially explicit biofuel supply chains. Applied Energy, 216, 116–131. https://doi.org/10.1016/j.apenergy.2018.02.077
  • O'Donnell, B., Goodchild, A., Cooper, J., & Ozawa., T. (2009). The relative contribution of transportation to supply chain greenhouse gas emissions: A case study of American wheat. Transportation Research Part D: Transport and Environment, 14(7), 487–492. https://doi.org/10.1016/j.trd.2009.05.003
  • ONTL. (2022). Observatório Nacional de Transporte Logística. Retrieved November 3, 2022, from https://ontl.epl.gov.br/aplicacoes/simulador-de-custo-de-transbordo/
  • Péra, T. G., Bartholomeu, D. B., Su, C. T., & Filho, J. V. C. (2019). Evaluation of green transport corridors of Brazilian soybean exports to China. Brazilian Journal of Operations & Production Management, 16(3), 398–412. https://doi.org/10.14488/BJOPM.2019.v16.n3.a4
  • Perdana, T., Chaerani, D., Hermiatin, F. R., Achmad, A. L. H., & Fridayana, A. (2022). Does an alternative local food network contribute to improving sustainable food security? Sustainability, 14(18), 11533. https://doi.org/10.3390/su141811533
  • Pérez-Mesa, J. C., Serrano-Arcos, M. M., Jiménez-Guerrero, J. F., & Sánchez-Fernández, R. (2021). Addressing the location problem of a perishables redistribution center in the middle of Europe. Foods, 10(5), 1091. https://doi.org/10.3390/foods10051091
  • Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A., & Parlikad, A. K. (2022). A review of pareto pruning methods for multi-objective optimization. Computers & Industrial Engineering, 167, 108022. https://doi.org/10.1016/j.cie.2022.108022
  • Junqueira.  R. A. R., & Morabito, R. (2019). Modeling and solving a sugarcane harvest front scheduling problem. International Journal of Production Economics, 213, 150–160. https://doi.org/10.1016/j.ijpe.2019.03.009
  • Rocco, C. D, & Morabito, R. (2016). Robust optimisation approach applied to the analysis of production/logistics and crop planning in the tomato processing industry. International Journal of Production Research, 54(19), 5842–5861. https://doi.org/10.1080/00207543.2016.1181284
  • RUMO. (2022). Rumo logística do Brasil. Retrieved October 23, 2022, from https://rumolog.com/
  • Schmid, V., Doerner, K. F., & Laporte, G. (2013). Rich routing problems arising in supply chain management. European Journal of Operational Research, 224(3), 435–448. https://doi.org/10.1016/j.ejor.2012.08.014
  • Sharifi, E., Fang, L., & Amin., S. H. (2023). A novel two-stage multi-objective optimization model for sustainable soybean supply chain design under uncertainty. Sustainable Production and Consumption, 40, 297–317. https://doi.org/10.1016/j.spc.2023.07.006
  • SIDRA. (2022). Sistema Brasileiro de Informaóão Geográfica de Recuperação Automática. Retrieved November 15, 2022, from https://sidra.ibge.gov.br/pesquisa/pam/tabelas
  • SIFRECA. (2022). Sistema de Informações de Fretes. Retrieved November 10, 2022, from https://sifreca.esalq.usp.br/
  • Steiner, P. J., Datta, D., Steiner, M. T. A., Júnior, O. C., Figueira, J. R., Detro, S. P., & Scarpin., C. T. (2017). A multi-objective genetic algorithm based approach for location of grain silos in paraná state of Brazil. Computers & Industrial Engineering, 111, 381–390. https://doi.org/10.1016/j.cie.2017.07.019
  • Suh, K, Suh, S., Walseth, B., Bae, J., & Barker., R. (2011). Optimal corn stover logistics for biofuel production: A case in minnesota. Transactions of the ASABE, 54(1), 229–238. https://doi.org/10.13031/2013.36240
  • Tang, C. S., & Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223(3), 585–594. https://doi.org/10.1016/j.ejor.2012.07.030Cited By 334.
  • Torre, R., Corlu, C. G., Faulin, J., Onggo, B. S., & Juan, A. A. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability, 13(3), 1551. https://doi.org/10.3390/su13031551
  • USDA. (2023). United states department of agriculture. Retrieved January 31, 2023, from https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery
  • Verrengia, M., & Vecchietti, A. (2022). A soybean supply chain model to analyze the greenhouse gas emissions of the transport sector. In Computer aided chemical engineering (Vol. 51, pp. 1327–1332). Elsevier.
  • West, T. O., & Marland, G. (2003). Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry, 63(1), 73–83. https://doi.org/10.1023/A:1023394024790
  • Yaghin, R. G., & Sarlak, P. (2022). Textile supply chain management considering carbon emissions and apparel demand fuzziness: A fuzzy mathematical programming approach. International Journal of Clothing Science and Technology, 34(2), 137–155. https://doi.org/10.1108/IJCST-08-2020-0124
  • Yaghin, R. G., Sarlak, P., & Ghareaghaji, A. A. (2020). Robust master planning of a socially responsible supply chain under fuzzy-stochastic uncertainty (A case study of clothing industry). Engineering Applications of Artificial Intelligence, 94, 103715. https://doi.org/10.1016/j.engappai.2020.103715
  • Yousefi-Babadi, A., Bozorgi-Amiri, A., Tavakkoli-Moghaddam, R., & Govindan, K. (2023). Redesign of the sustainable wheat-flour-bread supply chain network under uncertainty: An improved robust optimization. Transportation Research Part E: Logistics and Transportation Review, 176, 103215. https://doi.org/10.1016/j.tre.2023.103215
  • Zhang, L., & Hu, G. (2013). Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass and Bioenergy, 58, 238–250. https://doi.org/10.1016/j.biombioe.2013.08.016
  • Ziolkowska, J. R. (2014). Optimizing biofuels production in an uncertain decision environment: Conventional vs. advanced technologies. Applied Energy, 114, 366–376. https://doi.org/10.1016/j.apenergy.2013.09.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.