79
Views
0
CrossRef citations to date
0
Altmetric
Articles

Community structure detection in networks based on Tabu search

Pages 222-232 | Received 21 Apr 2022, Accepted 07 Nov 2022, Published online: 18 Dec 2022

References

  • Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 US election: divided they blog. In Proceedings of the 3rd international workshop on link discovery (pp. 36–43).
  • Adraoui, M., Retbi, A., Idrissi, M. K., & Bennani, S. (2022). Maximal cliques based method for detecting and evaluating learning communities in social networks. Future Generation Computer Systems, 126, 1–14. https://doi.org/10.1016/j.future.2021.07.034
  • Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. Nature, 466(7307), 761–764. https://doi.org/10.1038/nature09182
  • Agarwal, A., & Xue, L. (2020). Model-based clustering of nonparametric weighted networks with application to water pollution analysis. Technometrics, 62(2), 161–172. https://doi.org/10.1080/00401706.2019.1623076
  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
  • Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2007). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188. https://doi.org/10.1109/TKDE.2007.190689
  • Chen, M., Kuzmin, K., & B. K. Szymanski (2014). Community detection via maximisation of modularity and its variants. IEEE Transactions on Computational Social Systems,1(1), 46–65. https://doi.org/10.1109/TCSS.2014.2307458
  • Clauset, A., Newman, M. E. J, & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111. https://doi.org/10.1103/PhysRevE.70.066111
  • Clauset, A., Moore, C., & Newman, M. E. J (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101. https://doi.org/10.1038/nature06830
  • Danon, L., Diaz-Guilera, A., Duch, J., & Arenas, A. (2005). Comparing community structure identification. Journal of Statistical Mechanics: Theory and Experiment, 2005(09), P09008. https://doi.org/10.1088/1742-5468/2005/09/P09008
  • Duan, D., Li, Y., Li, R., & Lu, Z. (2012). Incremental k-clique clustering in dynamic social networks. Artificial Intelligence Review, 38(2), 129–147. https://doi.org/10.1007/s10462-011-9250-x
  • Durán, C., Muscoloni, A., & Cannistraci, C. V. (2021). Geometrical inspired pre-weighting enhances Markov clustering community detection in complex networks. Applied Network Science, 6(1), 1–16. https://doi.org/10.1007/s41109-020-00342-7
  • Elgazzar, H., Spurlock, K., & Bogart, T. (2021). Evolutionary clustering and community detection algorithms for social media health surveillance. Machine Learning with Applications, 6, 100084. https://doi.org/10.1016/j.mlwa.2021.100084
  • Esmaeili, M., H. M. Saad, & Nosratinia, A. (2021). Semidefinite programming for community detection with side information. IEEE Transactions on Network Science and Engineering, 8(2), 1957–1973. https://doi.org/10.1109/TNSE.2021.3078612
  • Fang, W., Wang, X., Liu, L., Wu, Z., Tang, S., & Zheng, Z. (2022). Community detection through vector-label propagation algorithms. Chaos, Solitons & Fractals, 158, 112066. https://doi.org/10.1016/j.chaos.2022.112066
  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75–174. https://doi.org/10.1016/j.physrep.2009.11.002
  • Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44. https://doi.org/10.1016/j.physrep.2016.09.002
  • Gandica, Y., Decuyper, A., Cloquet, C., Thomas, I., & Delvenne, J. C. (2020). Measuring the effect of node aggregation on community detection. EPJ Data Science, 9(1), 6. https://doi.org/10.1140/epjds/s13688-020-00223-0
  • Girvan, M., & Newman, M. E. J (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799
  • Gleiser, P. M., & Danon, L. (2003). Community structure in jazz. Advances in Complex Systems, 6(04), 565–573. https://doi.org/10.1142/S0219525903001067
  • Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1
  • Halim, Z., Sargana, H. M., & Waqas, M. (2021). Clustering of graphs using pseudo-guided random walk. Journal of Computational Science, 51, 101281. https://doi.org/10.1016/j.jocs.2020.101281
  • Hu, L., Pan, X., Tan, Z., & Luo, X. (2021). A fast fuzzy clustering algorithm for complex networks via a generalized momentum method. IEEE Transactions on Fuzzy Systems.
  • Javed, M. A., Younis, M. S., Latif, S., Qadir, J., & Baig, A. (2018). Community detection in networks: A multidisciplinary review. Journal of Network and Computer Applications, 108, 87–111. https://doi.org/10.1016/j.jnca.2018.02.011
  • Knuth, D. E. (1993). The stanford graphbase: A platform for combinatorial algorithms. In SODA (Vol. 93, pp. 41–43).
  • Kim, Y., Kim, J., Oh, S. S., Kim, S. W., Ku, M., & Cha, J. (2021). Community analysis of a crisis response network. Social Science Computer Review, 39(3), 371–390. https://doi.org/10.1177/0894439319858679
  • Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4), 046110. https://doi.org/10.1103/PhysRevE.78.046110
  • Lancichinetti, A., Radicchi, F., Ramasco, J. J., Fortunato, S., & Ben-Jacob, E. (2011). Finding statistically significant communities in networks. PloS One, 6(4), e18961. https://doi.org/10.1371/journal.pone.0018961
  • Li, C., Bai, J., Wenjun, Z., & Xihao, Y. (2019). Community detection using hierarchical clustering based on edge-weighted similarity in cloud environment. Information Processing & Management, 56(1), 91–109. https://doi.org/10.1016/j.ipm.2018.10.004
  • Li, Q., Cao, Z., Ding, W., & Li, Q. (2020). A multi-objective adaptive evolutionary algorithm to extract communities in networks. Swarm and Evolutionary Computation, 52, 100629. https://doi.org/10.1016/j.swevo.2019.100629
  • Li, C., Chen, H., Li, T., & Yang, X. (2022). A stable community detection approach for complex network based on density peak clustering and label propagation. Applied Intelligence, 52(2), 1188–1208. https://doi.org/10.1007/s10489-021-02287-5
  • Li, P. Z., Huang, L., Wang, C. D., & Lai, J. H. (2019, July). Edmot: An edge enhancement approach for motif-aware community detection. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 479–487).
  • Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4), 396–405. https://doi.org/10.1007/s00265-003-0651-y
  • Mahabadi, A., & Hosseini, M. (2021). SLPA-based parallel overlapping community detection approach in large complex social networks. Multimedia Tools and Applications, 80(5), 6567–6598. https://doi.org/10.1007/s11042-020-09993-1
  • Meeks, K., & Skerman, F. (2019). The parameterised complexity of computing the maximum modularity of a graph. Algorithmica, 1–26.
  • Mitrai, I., & Daoutidis, P. (2020). Decomposition of integrated scheduling and dynamic optimization problems using community detection. Journal of Process Control, 90, 63–74. https://doi.org/10.1016/j.jprocont.2020.04.003
  • Nayyeri, M., Vahdati, S., Zhou, X., Shariat Yazdi, H., & Lehmann, J. (2020, May). Embedding-based recommendations on scholarly knowledge graphs. In European semantic web conference (pp. 255–270). Springer.
  • Newman, M. E. J (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104. https://doi.org/10.1103/PhysRevE.74.036104
  • Newman, M. E. J (2013). Spectral methods for community detection and graph partitioning. Physical Review E, 88(4), 042822. https://doi.org/10.1103/PhysRevE.88.042822
  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113. https://doi.org/10.1103/PhysRevE.69.026113
  • Osaba, E., Del Ser, J., Camacho, D., Bilbao, M. N., & Yang, X. S. (2020). Community detection in networks using bio-inspired optimization: Latest developments, new results and perspectives with a selection of recent meta-heuristics. Applied Soft Computing, 87, 106010. https://doi.org/10.1016/j.asoc.2019.106010
  • Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814–818. https://doi.org/10.1038/nature03607
  • Peixoto, T. P. (2014). Hierarchical block structures and high-resolution model selection in large networks. Physical Review X, 4(1), 011047. https://doi.org/10.1103/PhysRevX.4.011047
  • Peixoto, T. P. (2019). Network reconstruction and community detection from dynamics. Physical Review Letters, 123, 128301. https://doi.org/10.1103/PhysRevLett.123.128301
  • Pons, P., & Latapy, M. (2005). Computing communities in large networks using random walks. In International symposium on computer and information sciences (pp. 284–293). Springer.
  • Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106. https://doi.org/10.1103/PhysRevE.76.036106
  • Rozemberczki, B., Davies, R., Sarkar, R., & Sutton, C. (2019, August). Gemsec: Graph embedding with self clustering. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 65–72).
  • Su, C., Guan, X., Du, Y., Wang, Q., & Wang, F. (2018). A fast multi-level algorithm for community detection in directed online social networks. Journal of Information Science, 44(3), 392–407. https://doi.org/10.1177/0165551517698305
  • Shahabi Sani, N., Manthouri, M., & Farivar, F. (2020). A multi-objective ant colony optimization algorithm for community detection in complex networks. Journal of Ambient Intelligence and Humanized Computing, 11(1), 5–21. https://doi.org/10.1007/s12652-018-1159-7
  • Shin, H., Park, J., & Kang, D. (2022). A graph-cut-based approach to community detection in networks. Applied Sciences, 12(12), 6218. https://doi.org/10.3390/app12126218
  • Sun, H., Liu, J., Huang, J., Wang, G., Yang, Z., Song, Q., & Jia, X. (2015). CenLP: A centrality-based label propagation algorithm for community detection in networks. Physica A: Statistical Mechanics and Its Applications, 436, 767–780. https://doi.org/10.1016/j.physa.2015.05.080
  • Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From Louvain to Leiden: Guaranteeing well-connected communities. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-41695-z
  • Vieira, V. D. F., Xavier, C. R., & Evsukoff, A. G. (2020). A comparative study of overlapping community detection methods from the perspective of the structural properties. Applied Network Science, 5(1), 1–42. https://doi.org/10.1007/s41109-020-00289-9
  • Wu, Z., Wang, X., Fang, W., Liu, L., Tang, S., Zheng, H., & Zheng, Z. (2021). Community detection based on first passage probabilities. Physics Letters A, 390, 127099. https://doi.org/10.1016/j.physleta.2020.127099
  • Yazdanparast, S., Havens, T. C., & Jamalabdollahi, M. (2020). Soft overlapping community detection in large-scale networks via fast fuzzy modularity maximization. IEEE Transactions on Fuzzy Systems, 29(6), 1533–1543. https://doi.org/10.1109/TFUZZ.2020.2980502
  • Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473. https://doi.org/10.1086/jar.33.4.3629752
  • Zhang, P., & Moore, C. (2014). Scalable detection of statistically significant communities and hierarchies, using message passing for modularity. Proceedings of the National Academy of Sciences, 111(51), 18144–18149. https://doi.org/10.1073/pnas.1409770111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.