168
Views
4
CrossRef citations to date
0
Altmetric
Articles

Pitch orientation control of twin-rotor MIMO system using sliding mode controller with state varying gains

&
Pages 211-221 | Received 22 Sep 2022, Accepted 04 Jan 2023, Published online: 18 Jan 2023

References

  • Abdul-Adheem, W. R., Azar, A. T., Ibraheem, I. K., & Humaidi, A. J. (2020). Novel active disturbance rejection control based on nested linear extended state observers. Applied Sciences (Switzerland), 10(12), 4069. https://doi.org/10.3390/app10124069
  • Aidoud, M., Feliu-Batlle, V., Sebbagh, A., & Sedraoui, M. (2022). Small signal model designing and robust decentralized tilt integral derivative TID controller synthesizing for twin rotor MIMO system. International Journal of Dynamics and Control,10, 1657–1673. https://doi.org/10.1007/s40435-022-00916-6.
  • Castañeda, H., Plestan, F., Chriette, A., & de León-Morales, J. (2016). Continuous differentiator based on adaptive second-order sliding-mode control for a 3-DOF helicopter. IEEE Transactions on Industrial Electronics, 63(9), 5786–5793. https://doi.org/10.1109/TIE.2016.2569058
  • Chen, F., Zhang, K., Jiang, B., & Wen, C. (2016). Adaptive sliding mode observer–based robust fault reconstruction for a helicopter with actuator fault. Asian Journal of Control, 18(4), 1558–1565. https://doi.org/10.1002/asjc.v18.4
  • Choudhary, S. K. (2016). Optimal feedback control of twin rotor MIMO system with a prescribed degree of stability. International Journal of Intelligent Unmanned Systems, 4(4), 226–238. https://doi.org/10.1108/IJIUS-07-2016-0005
  • Dutta, L., & Das, D. K. (2021). A new adaptive explicit nonlinear model predictive control design for a nonlinear mimo system: an application to twin rotor MIMO system. International Journal of Control, Automation, and Systems, 19(7), 2406–2419. https://doi.org/10.1007/s12555-020-0272-5
  • El'sgol'ts, L. E. (1961). International monographs on advanced mathematics and physics: Differential equations. Hindustan Publisher Company.
  • Fang, X., & Liu, F. (2019). High–order mismatched disturbance rejection control for small–scale unmanned helicopter via continuous nonsingular terminal sliding–mode approach. International Journal of Robust and Nonlinear Control, 29(4), 935–948. https://doi.org/10.1002/rnc.v29.4
  • Fröhlich, B., Hose, D., Dieterich, O., Hanss, M., & Eberhard, P. (2022). Uncertainty quantification of large-scale dynamical systems using parametric model order reduction. Mechanical Systems and Signal Processing, 171, 108855. https://doi.org/10.1016/j.ymssp.2022.108855
  • Haruna, A., Mohamed, Z., Efe, M.Ö., & Basri, M. A. (2017). Dual boundary conditional integral backstepping control of a twin rotor MIMO system. Journal of the Franklin Institute, 354(15), 6831–6854. https://doi.org/10.1016/j.jfranklin.2017.08.050
  • He, M., & He, J. (2018). Extended state observer-based robust backstepping sliding mode control for a small-size helicopter. IEEE Access, 6, 33480–33488. https://doi.org/10.1109/Access.6287639
  • Kang, Y., Chen, S., Wang, X., & Cao, Y. (2019). Deep convolutional identifier for dynamic modeling and adaptive control of unmanned helicopter. IEEE Transactions on Neural Networks and Learning Systems, 30(2), 524–538. https://doi.org/10.1109/TNNLS.2018.2844173
  • Khalil, H. K. (1996). Nonlinear systems. Prentice-Hall, 2(5), pp. 2-1, 5-1.
  • Kim, S. K., & Ahn, C. K. (2022). Performance-Boosting attitude control for 2-DOF helicopter applications via surface stabilization approach. IEEE Transactions on Industrial Electronics, 69(7), 7234–7243. https://doi.org/10.1109/TIE.2021.3095799
  • Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247–1263. https://doi.org/10.1080/00207179308923053
  • Li, Z., Liu, H. H. T., Zhu, B., Gao, H., & Kaynak, O. (2015). Nonlinear robust attitude tracking control of a table-mount experimental helicopter using output feedback. IEEE Transactions on Industrial Electronics, 62(9), 5665–5676. https://doi.org/10.1109/TIE.2015.2414396
  • Li, Z., Yu, J., Xing, X., & Gao, H. (2015). Robust output–feedback attitude control of a three–degree–of–freedom helicopter via sliding–mode observation technique. IET Control Theory and Applications, 9(11), 1637–1643. https://doi.org/10.1049/cth2.v9.11
  • Lin, L. G., & Lin, W. W. (2021). Computationally efficient SDRE control design for 3-DOF helicopter benchmark system. IEEE Transactions on Aerospace and Electronic Systems, 57(5), 3320–3336. https://doi.org/10.1109/TAES.2021.3074211
  • Miah, S., Kafi, M. R., & Chaoui, H. (2019). Generalized cascaded control technology for a twin-rotor MIMO system with state estimation. J Control Autom Electr Syst, 30, 170–180. https://doi.org/10.1007/s40313-019-00448-z
  • Norsahperi, N. M. H., & Danapalasingam, K. A. (2020). Particle swarm-based and neuro-based FOPID controllers for a twin rotor system with improved tracking performance and energy reduction. ISA Transactions, 102, 230–244. https://doi.org/10.1016/j.isatra.2020.03.001
  • Pandey, V. K., Kar, I., & Mahanta, C. (2017). Controller design for a class of nonlinear MIMO coupled system using multiple models and second level adaptation. ISA Transactions, 69, 256–272. https://doi.org/10.1016/j.isatra.2017.05.005 ISSN 0019-0578.
  • Polyakov, A., & Poznyak, A. (2008). Lyapunov function design for finite-time convergence analysis: Twisting controller for second-order sliding mode realization. Automatica, 45(2), 444–448. https://doi.org/10.1016/j.automatica.2008.07.013
  • Rashad, R., El-Badawy, A., & Aboudonia, A. (2017). Sliding mode disturbance observer-based control of a twin rotor MIMO system. ISA Transactions, 69, 166–174. https://doi.org/10.1016/j.isatra.2017.04.013 ISSN 0019-0578.
  • Seo, J., Lee, S., Lee, J., & Choi, J. (2022). Nonaffine helicopter control design and implementation based on a robust explicit nonlinear model predictive control. IEEE Transactions on Control Systems Technology, 30(2), 811–818. https://doi.org/10.1109/TCST.2021.3069106
  • Shen, S., & Xu, J. (2021). Trajectory tracking active disturbance rejection control of the unmanned helicopter and its parameters tuning. IEEE Access, 9, 56773–56785. https://doi.org/10.1109/ACCESS.2021.3071457
  • Singh, R., & Bhushan, B. (2021). Randomized algorithms for probabilistic analysis of parametric uncertainties with unmanned helicopters. Mechanical Systems and Signal Processing, 152, 107459. https://doi.org/10.1016/j.ymssp.2020.107459
  • Tee, K. P., Ge, S. S., & Tay, F. E. H. (2008). Adaptive neural network control for helicopters in vertical flight. IEEE Transactions on Control Systems Technology, 16(4), 753–762. https://doi.org/10.1109/TCST.2007.912242
  • Twin rotor MIMO system manual. (2006). Feedback Instruments Ltd.
  • Ullah, I., & Pei, H. (2020). Fixed time disturbance observer based sliding mode control for a miniature unmanned helicopter hover operations in presence of external disturbances. IEEE Access, 8, 73173–73181. https://doi.org/10.1109/Access.6287639
  • Yang, H., Jiang, B., Liu, H. H. T., Yang, H., & Zhang, Q. (2019). Attitude synchronization for multiple 3-DOF helicopters with actuator faults. IEEE/ASME Transactions on Mechatronics, 24(2), 597–608. https://doi.org/10.1109/TMECH.3516
  • Yu, L., He, G., Wang, X., & Zhao, S. (2022). Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Transactions on Industrial Electronics, 69(10), 10322–10332. https://doi.org/10.1109/TIE.2021.3118556
  • Zeghlache, S., Benyettou, L., Djerioui, A., & Ghellab, M. Z. (2022). Twin rotor mimo system experimental validation of robust adaptive fuzzy control against wind effects. IEEE Systems Journal, 16(1), 409–419. https://doi.org/10.1109/JSYST.2020.3034993
  • Zhou, B. (2022). Multi-variable adaptive high-order sliding mode quasi-optimal control with adjustable convergence rate for unmanned helicopters subject to parametric and external uncertainties. Nonlinear Dynamics, 108(4), 3671–3692. https://doi.org/10.1007/s11071-022-07433-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.