2,001
Views
0
CrossRef citations to date
0
Altmetric
ANIMAL HUSBANDRY & VETERINARY SCIENCE

Application of nanotechnology in animal nutrition: Bibliographic review

ORCID Icon
Article: 2290308 | Received 04 Jul 2023, Accepted 28 Nov 2023, Published online: 15 Dec 2023

References

  • Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. R., Alghamdi, E. S., Hassan, F. U., Bilal, R. M., Elnesr, S. S., Dawood, M. A., Nagadi, S. A., Elwan, H. A. M., ALmasoudi, A. G., & Attia, Y. A. (2021). Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals, 11(7), 1916. https://doi.org/10.3390/ani11071916
  • Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5–16. https://doi.org/10.1016/j.jconrel.2004.08.010
  • Ahmadi, F., & Rahimi, F. (2011). The effect of different levels of nano silver on performance and retention of silver in edible tissues of broilers. World Applied Sciences Journal, 12, 1–4. https://www.semanticscholar.org/paper/The-effect-of-different-levels-of-Nano-Silver-on-of-Ahmadi-Rahimi/00c0b57beed4df0c7fc54aa5fa54df197ae43390
  • Ahmadi, A., Shahidi, S.-A., Safari, R., Motamedzadegan, A., & Ghorbani-HasanSaraei, A. (2022). Evaluation of stability and antibacterial properties of extracted chlorophyll from alfalfa (medicago sativa L.). Food and Chemical Toxicology, 163, 112980. https://doi.org/10.1016/j.fct.2022.112980
  • Ahmed, J., Vasagam, K. K., & Ramalingam, K. (2023). Nanoencapsulated Aquafeeds and Current uses in Fisheries/Shrimps: A review. Applied Biochemistry and Biotechnology, 195(11), 7110–7131. https://doi.org/10.1007/s12010-023-04418-9
  • Alavi, M., Kamarasu, P., McClements, D. J., & Moore, M. D. (2022). Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Advances in Colloid and Interface Science, 102726, 102726. https://www.sciencedirect.com/science/article/abs/pii/S0001868622001282. https://doi.org/10.1016/j.cis.2022.102726
  • Al-Beitawi, N. A., Momani Shaker, M., El-Shuraydeh, K. N., & Bláha, J. (2017). Effect of nanoclay minerals on growth performance, internal organs and blood biochemistry of broiler chickens compared to vaccines and antibiotics. Journal of Applied Animal Research, 45(1), 543–549. https://doi.org/10.1080/09712119.2016.1221827
  • Alhashmi Alamer, F., & Beyari, R. F. (2022). Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials, 12(9), 1609. https://doi.org/10.3390/nano12091609
  • Al-Sultan, S. I., Hereba, A. R. T., Hassanein, K. M., Abd-Allah, S. M., Mahmoud, U. T., & Abdel-Raheem, S. M. (2022). The impact of dietary inclusion of silver nanoparticles on growth performance, intestinal morphology, caecal microflora, carcass traits and blood parameters of broiler chickens. Italian Journal of Animal Science, 21(1), 967–978. https://doi.org/10.1080/1828051X.2022.2083528
  • Anderson, R. A. (2003). Chromium and insulin resistance. Nutrition Research Reviews, 16(2), 267–275. https://doi.org/10.1079/NRR200366
  • AshaRani, P., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. Agricultural Science & Technology Nano, 3(2), 279–290. https://doi.org/10.1021/nn800596w
  • Awuchi, C. G., Morya, S., Dendegh, T. A., Okpala, C. O. R., & Korzeniowska, M. (2022). Nanoencapsulation of food bioactive constituents and its associated processes: A revisit. Bioresource Technology Reports, 19, 101088. https://www.sciencedirect.com/science/article/abs/pii/S2589014X22001451. https://doi.org/10.1016/j.biteb.2022.101088
  • Azevedo, C. F., Nascimento, M., Carvalho, I. R., Nascimento, A. C. C., de Almeida, H. C. F., Cruz, C. D., & da Silva, J. A. G. (2022). Updated knowledge in the estimation of genetics parameters: A Bayesian approach in white oat (Avena sativa L.). Euphytica, 218(4), 43. https://doi.org/10.1007/s10681-022-02995-0
  • Baharuddin, A. S., Wakisaka, M., Shirai, Y., Abd-Aziz, S., Abdul, R., & Hassan, M. (2009). Co-composting of empty fruit bunches and partially treated palm oil mill effluents in pilot scale. International Journal of Agricultural Research, 4(2), 69–78. https://doi.org/10.3923/ijar.2009.69.78
  • Bakshi, A., & Panigrahi, A. K. (2022). Chromium contamination in soil and its bioremediation: An overview. Advances in Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation, 229–248. https://doi.org/10.1007/978-3-030-89984-4_15
  • Bawazeer, S., Khan, I., Rauf, A., Aljohani, A. S., Alhumaydhi, F. A., Khalil, A. A., Qureshi, M. N., Ahmad, L., & Khan, S. A. (2022). Black pepper (Piper nigrum) fruit-based gold nanoparticles (BP-AuNPs): Synthesis, characterization, biological activities, and catalytic applications–A green approach. Green Processing and Synthesis, 11(1), 11–28. https://doi.org/10.1515/gps-2022-0002
  • Bergin, I. L., & Witzmann, F. A. (2013). Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. International Journal of Biomedical Nanoscience and Nanotechnology, 3(1/2), 163–210. https://doi.org/10.1504/IJBNN.2013.054515
  • Bhagat, S., & Singh, S. (2022). Nanominerals in nutrition: Recent developments, present burning issues and future perspectives. Food Research International, 160, 111703. https://doi.org/10.1016/j.foodres.2022.111703
  • Bhanja, S., & Verma, S. (2021). Prospects of nano minerals in poultry nutrition. Indian Journal of Poultry Science, 56(1), 1–8. https://doi.org/10.5958/0974-8180.2021.00006.4
  • Brewer, A., Dror, I., & Berkowitz, B. (2022). Electronic waste as a source of rare earth element pollution: Leaching, transport in porous media, and the effects of nanoparticles. Chemosphere, 287, 132217. https://doi.org/10.1016/j.chemosphere.2021.132217
  • Bunglavan, S. J., Garg, A., Dass, R., & Shrivastava, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2(3), 36–47. https://d1wqtxts1xzle7.cloudfront.net/82068395/5-lriArticle_1-libre.pdf?1647111564=&response-content-disposition=inline%3B+filename%3DUse_of_nanoparticles_as_feed_additives_t.pdf&Expires=1702366214&Signature=AJ-ixko7-2RRDI5IopYvo~R5lc9xGhdJVrFCKaZCNDE1C1YriptIjfF07aISIDBd0TachoTw8F3LZ8ckiZVobT9zT-N--NpN~3PXqB6Z0Z83UkmAOglJMtOElTQndydpqtMdPpl4ipudzGnAfG2g6fs8CFXgfslcJAsP08V8tebDyUTR19BuHeSCh6LTPxtU9Z2CuvMitUOGVQphznfortuGnVL1InEnnAd6vqg9JMewGktB~joUsT1wbbdE2vBecKv8b0iHP15SA1bff5X3f-9oelujbUSi5fql13ZhYCOALJ0CH77yu8QMkt~rLAEA-i0vMmEdKirn-0kouobWKQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
  • Cebadero-Domínguez, Ó., Jos, A., Cameán, A. M., & Cătunescu, G. M. (2022). Hazard characterization of graphene nanomaterials in the frame of their food risk assessment: A review. Food & Chemical Toxicology, 164, 113014. https://www.sciencedirect.com/science/article/pii/S0278691522002125. https://doi.org/10.1016/j.fct.2022.113014
  • Chaturvedi, R., Sharma, A., Sharma, K., & Saraswat, M. (2022). Nanotech Science as well as its multifunctional implementations. Recent Trends in Industrial and Production Engineering: Select Proceedings of ICCEMME, 2021, 217–228. https://link.springer.com/chapter/10.1007/978-981-16-3330-0_18
  • Choct, M. (2009). Managing gut health through nutrition. British Poultry Science, 50(1), 9–15. https://doi.org/10.1080/00071660802538632
  • Cuvas-Limón, R. B., Ferreira-Santos, P., Cruz, M., Teixeira, J. A., Belmares, R., & Nobre, C. (2022). Novel bio-functional aloe vera beverages fermented by probiotic enterococcus faecium and lactobacillus lactis. Molecules, 27(8), 2473. https://doi.org/10.3390/molecules27082473
  • Das, A., Adhikari, S., Deka, D., Baildya, N., Sahare, P., Banerjee, A., Paul, S., Bisgin, A., & Pathak, S. (2023). An updated review on the role of nanoformulated phytochemicals in colorectal cancer. Medicina, 59(4), 685. https://doi.org/10.3390/medicina59040685
  • Doe, J. E., Boobis, A. R., Blacker, A., Dellarco, V., Doerrer, N. G., Franklin, C., Goodman, J. I., Kronenberg, J. M., Lewis, R., McConnell, E. E., Mercier, T., Moretto, A., Nolan, C., Padilla, S., Phang, W., Solecki, R., Tilbury, L., van Ravenzwaay, B., & Wolf, D. C. (2006). A tiered approach to systemic toxicity testing for agricultural chemical safety assessment. Critical Reviews in Toxicology, 36(1), 37–68. https://doi.org/10.1080/10408440500534370
  • Dong, Y., Zhang, K., Han, M., Miao, Z., Liu, C., & Li, J. (2022). Low level of dietary organic trace minerals improved egg quality and modulated the status of eggshell gland and intestinal microflora of laying hens during the late production stage. Frontiers in Veterinary Science, 9, 920418. https://doi.org/10.3389/fvets.2022.920418
  • Dupuis, V., Cerbu, C., Witkowski, L., Potarniche, A.-V., Timar, M. C., Żychska, M., & Sabliov, C. M. (2022). Nanodelivery of essential oils as efficient tools against antimicrobial resistance: A review of the type and physical-chemical properties of the delivery systems and applications. Drug Delivery, 29(1), 1007–1024. https://doi.org/10.1080/10717544.2022.2056663
  • Eivazzadeh-Keihan, R., Noruzi, E. B., Chidar, E., Jafari, M., Davoodi, F., Kashtiaray, A., Gorab, M. G., Hashemi, S. M., Javanshir, S., & Cohan, R. A. (2022). Applications of carbon-based conductive nanomaterials in biosensors. Chemical Engineering Journal, 442, 136183. https://doi.org/10.1016/j.cej.2022.136183
  • Elnahal, A. S., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759–792. https://doi.org/10.1007/s10658-021-02393-7
  • Fajardo, C., Martinez-Rodriguez, G., Blasco, J., Mancera, J. M., Thomas, B., & De Donato, M. (2022). Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquaculture and Fisheries, 7(2), 185–200. https://doi.org/10.1016/j.aaf.2021.12.006
  • Fesseha, H., Degu, T., & Getachew, Y. (2020). Nanotechnology and its application in animal production: A review. Veterinary Medicine – Open Journal, 5(2), 43–50. https://doi.org/10.17140/VMOJ-5-148
  • Fiore, V., Badagliacco, D., Sanfilippo, C., Pirrone, R., Siengchin, S., Rangappa, S. M., & Botta, L. (2022). Lemongrass plant as potential sources of reinforcement for biocomposites: A preliminary experimental comparison between leaf and culm fibers. Journal of Polymers and the Environment, 30(11), 4726–4737. https://doi.org/10.1007/s10924-022-02545-8
  • Fondevila, M., Herrer, R., Casallas, M., Abecia, L., & Ducha, J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology, 150(3–4), 259–269. https://doi.org/10.1016/j.anifeedsci.2008.09.003
  • Fubini, B., Ghiazza, M., & Fenoglio, I. (2010). Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology, 4(4), 347–363. https://doi.org/10.3109/17435390.2010.509519
  • Fuchs, S., Kutscher, M., Hertel, T., Winter, G., Pietzsch, M., & Coester, C. (2010). Transglutaminase: new insights into gelatin nanoparticle cross-linking. Journal of Microencapsulation, 27(8), 747–754. https://doi.org/10.3109/02652048.2010.518773
  • Galanakis, C. M. (2019). Trends in non-alcoholic beverages academic press. Book, 2020. https://www.sciencedirect.com/book/9780128169384/trends-in-non-alcoholic-beverages#book-info
  • Ghaffarizadeh, A., Sotoudeh, E., Mozanzadeh, M. T., Sanati, A. M., & Ghasemi, A. (2022). Supplementing dietary selenium nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquaculture Reports, 25, 101215. https://doi.org/10.1016/j.aqrep.2022.101215
  • Gopi, S., & Balakrishnan, P. (2022). Handbook of Nutraceuticals and natural. Products Wiley Online Library.
  • Grunwald, P. (2017). Biocatalysis and nanotechnology CRC press. ISBN: 978-1-119-74683-6. https://www.wiley.com/en-us/Handbook+of+Nutraceuticals+and+Natural+Products%2C+2+Volume+Set-p-9781119746836.
  • Gu, Y., Yuan, L., Li, M., Wang, X., Rao, D., Bai, X., Shi, K., Xu, H., Hou, S., & Yao, H. (2022). Co-immobilized bienzyme of horseradish peroxidase and glucose oxidase on dopamine-modified cellulose–chitosan composite beads as a high-efficiency biocatalyst for degradation of acridine. RSC Advances, 12(35), 23006–23016. https://doi.org/10.1039/D2RA04091C
  • Haase, F. T., Bergmann, A., Jones, T. E., Timoshenko, J., Herzog, A., Jeon, H. S., Rettenmaier, C., & Cuenya, B. R. (2022). Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nature Energy, 7(8), 765–773. https://doi.org/10.1038/s41560-022-01083-w
  • Halperin, F. W. (1986). Quantum size effects in metal particles. Reviews of Modern Physics, 58(3), 533. https://doi.org/10.1103/RevModPhys.58.533
  • Harish, V., Tewari, D., Gaur, M., Yadav, A. B., Swaroop, S., Bechelany, M., & Barhoum, A. (2022). Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials, 12(3), 457. https://doi.org/10.3390/nano12030457
  • Hasan, M. N., Chand, N., Naz, S., Khan, R. U., Ayaşan, T., Laudadio, V., & Tufarelli, V. (2022). Mitigating heat stress in broilers by dietary dried tamarind (Tamarindus indica L.) pulp: Effect on growth and blood traits, oxidative status and immune response. Livestock Science, 264, 105075. https://doi.org/10.1016/j.livsci.2022.105075
  • Hassan, M., Ding, W., Shi, Z., & Zhao, S. (2016). Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: AC/N optimization case. Bioresource Technology, 211, 534–541. https://doi.org/10.1016/j.biortech.2016.03.148
  • Hassan, S., Hassan, F.-U., & Rehman, M. S.-U. (2020). Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biological Trace Element Research, 195(2), 591–612. https://doi.org/10.1007/s12011-019-01862-9
  • Hegedüs, I., Vitai, M., Jakab, M., & Nagy, E. (2020). Study of prepared α-chymotrypsin as enzyme nanoparticles and of biocatalytic membrane reactor. Catalysts, 10(12), 1454. https://doi.org/10.3390/catal10121454
  • Hemathilake, D., & Gunathilake, D. (2022). Agricultural productivity and food supply to meet increased demands, future foods. Elsevier.
  • Hett, A. (2004). Nanotechnology: Small matter, many unknowns. Swiss re, https://www.nanowerk.com/nanotechnology/reports/reportpdf/report93.pdf.
  • Hussan, F., Krishna, D., Preetam, V. C., Reddy, P., & Gurram, S. (2022). Dietary supplementation of nano zinc oxide on performance, carcass, serum and meat quality parameters of commercial broilers. Biological Trace Element Research, 200(1), 348–353. https://doi.org/10.1007/s12011-021-02635-z
  • Islam, M. R., Martinez-Soto, C. E., Lin, J. T., Khursigara, C. M., Barbut, S., & Anany, H. (2023). A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Critical Reviews in Food Science and Nutrition, 63(18), 3097–3129. https://doi.org/10.1080/10408398.2021.1984200
  • Javed, R., Ain, N. U., Gul, A., Arslan Ahmad, M., Guo, W., Ao, Q., & Tian, S. (2022). Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up‐to‐date review. IET Nanobiotechnology, 16(5), 171–189. https://doi.org/10.1049/nbt2.12085
  • Javid, A., Amiri, H., Kafrani, A. T., & Rismani-Yazdi, H. (2022). Post-hydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: A key stage of butanol production from waste textile. International Journal of Biological Macromolecules, 207, 324–332. https://doi.org/10.1016/j.ijbiomac.2022.03.013
  • Jia, J., Ahmed, I., Liu, L., Liu, Y., Xu, Z., Duan, X., Li, Q., Dou, T., Gu, D., Rong, H., Wang, K., Li, Z., Talpur, M. Z., Huang, Y., Wang, S., Yan, S., Tong, H., Zhao, S. … Su, Z. (2018). Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS One, 13(4), e0195378. https://doi.org/10.1371/journal.pone.0195378
  • Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. https://doi.org/10.1186/s12951-022-01477-8
  • Kareem, E. H., Dawood, T. N., & Al-Samarai, F. R. (2022). Application of nanoparticle in the Veterinary medicine. Magna Scientia Advanced Research and Reviews, 4(1), 027–038. https://doi.org/10.30574/msarr.2022.4.1.0082
  • Kaushik, J., Yadav, M., Sharma, N., Jindal, D. K., Joshi, K., Dahiya, M., & Deep, A. (2022). Phytochemical analysis and in vitro evidence of antimalarial, antibacterial, antifungal, antioxidant and anti-inflammatory activities of ethanol extract of Emblica officinalis fruit. Anti-Infective Agents, 20(4), 70–79. https://doi.org/10.2174/2211352520666220318091023
  • Kawata, K., Osawa, M., & Okabe, S. (2009). In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environmental Science & Technology, 43(15), 6046–6051. https://doi.org/10.1021/es900754q
  • Kessler, R. (2011). Engineered nanoparticles in consumer products: Understanding a new ingredient. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.119-a120
  • Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 33, 100892. https://doi.org/10.1016/j.fpsl.2022.100892
  • Khan, S., & Hossain, M. K. (2022). Classification and properties of nanoparticles, nanoparticle-based polymer composites. Elsevier.
  • Khan, F., Shariq, M., Asif, M., Siddiqui, M. A., Malan, P., & Ahmad, F. (2022). Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials, 12(4), 673. https://doi.org/10.3390/nano12040673
  • Khizar, S., Elaissari, A., Al-Dossary, A. A., Zine, N., Jaffrezic-Renault, N., & Errachid, A. (2022). Advancement in nanoparticle-based biosensors for point-of-care in vitro diagnostics. Current Topics in Medicinal Chemistry, 22(10), 807–833. https://doi.org/10.2174/1568026622666220401160121
  • King, T., Osmond McLeod, M. J., & Duffy, L. L. (2018). Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology, 72, 62–73. https://doi.org/10.1016/j.tifs.2017.11.015
  • Kroubi, M., Daulouede, S., Karembe, H., Jallouli, Y., Howsam, M., Mossalayi, D., Vincendeau, P., & Betbeder, D. (2010). Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology, 21(50), 505102. https://doi.org/10.1088/0957-4484/21/50/505102
  • Kumari, A., & Chauhan, A. K. (2022). Iron nanoparticles as a promising compound for food fortification in iron deficiency anemia: A review. Journal of Food Science and Technology, 59(9), 3319–3335. https://doi.org/10.1007/s13197-021-05184-4
  • Kumar, A., Shah, S. R., Jayeoye, T. J., Kumar, A., Parihar, A., Prajapati, B., Singh, S., & Kapoor, D. U. (2023). Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products. Frontiers in Nanotechnology, 5, 1175149. https://doi.org/10.3389/fnano.2023.1175149
  • Kumar, P., Singh, P., Kumar, D., Prakash, V., Hussain, M., & Das, A. (2017). A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes. Materials and Manufacturing Processes, 32(5), 564–572. https://doi.org/10.1080/10426914.2016.1244832
  • Lai, W., Ma, Z., Zhang, J., Yuan, Y., Qiao, Y., & Huang, H. (2022). Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress. Advanced Functional Materials, 32(16), 2111193. https://doi.org/10.1002/adfm.202111193
  • Lecour, S., Du Pré, B. C., Bøtker, H. E., Brundel, B. J., Daiber, A., Davidson, S. M., Ferdinandy, P., Girao, H., Gollmann-Tepeköylü, C., Gyöngyösi, M., Hausenloy, D. J., Madonna, R., Marber, M., Perrino, C., Pesce, M., Schulz, R., Sluijter, J. P. G., Steffens, S. … Young, M. E. (2022). Circadian rhythms in ischaemic heart disease: Key aspects for preclinical and translational research: Position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 118(12), 2566–2581. https://doi.org/10.1093/cvr/cvab293
  • Lee, Y., Ahn, S., Chang, Y., & Kwak, H. (2015). Physicochemical and sensory properties of milk supplemented with dispersible nanopowdered oyster shell during storage. Journal of Dairy Science, 98(9), 5841–5849. https://doi.org/10.3168/jds.2014-9105
  • Lee, S.-H., Kim, D.-S., Park, S.-H., & Park, H. (2022). Phytochemistry and applications of Cinnamomum camphora essential oils. Molecules, 27(9), 2695. https://doi.org/10.3390/molecules27092695
  • Liao, W., Badri, W., Dumas, E., Ghnimi, S., Elaissari, A., Saurel, R., & Gharsallaoui, A. (2021). Nanoencapsulation of essential oils as natural food antimicrobial agents: An overview. Applied Sciences, 11(13), 5778. https://doi.org/10.3390/app11135778
  • Li, J., Fu, J., Ma, Y., He, Y., Fu, R., Qayum, A., Jiang, Z., & Wang, L. (2022). Low temperature extrusion promotes transglutaminase cross-linking of whey protein isolate and enhances its emulsifying properties and water holding capacity. Food Hydrocolloids, 125, 107410. https://doi.org/10.1016/j.foodhyd.2021.107410
  • Li, F.-Q., Su, H., Wang, J., Liu, J.-Y., Zhu, Q.-G., Fei, Y.-B., Pan, Y.-H., & Hu, J.-H. (2008). Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. International Journal of Pharmaceutics, 349(1–2), 274–282. https://doi.org/10.1016/j.ijpharm.2007.08.001
  • Liu, A. A., Henin, S., Abbaspoor, S., Bragin, A., Buffalo, E. A., Farrell, J. S., Foster, D. J., Frank, L. M., Gedankien, T., Gotman, J., Guidera, J. A., Hoffman, K. L., Jacobs, J., Kahana, M. J., Li, L., Liao, Z., Lin, J. J., Losonczy, A. & Zugaro, M. (2022). A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nature Communications, 13(1), 6000. https://doi.org/10.1038/s41467-022-33536-x
  • Liu, W., & Huang, Y. (2022). Cell membrane-engineered nanoparticles for cancer therapy. Journal of Materials Chemistry B, 10(37), 7161–7172. https://doi.org/10.1039/D2TB00709F
  • Liu, X., Hu, Y., Wei, B., Liu, F., Xu, H., Liu, C., Li, Y., & Liang, H. (2022). Immobilized glucosyltransferase and sucrose synthase on Fe3O4@ uio-66 in cascade catalysis for the one-pot conversion of rebaudioside D from rebaudioside a. Process Biochemistry, 118, 323–334. https://doi.org/10.1016/j.procbio.2022.05.004
  • Liu, L., Li, Y., AL-Huqail, A. A., Ali, E., Alkhalifah, T., Alturise, F., & Ali, H. E. (2023). Green synthesis of Fe3O4 nanoparticles using Alliaceae waste (allium sativum) for a sustainable landscape enhancement using support vector regression. Chemosphere, 334, 138638. https://doi.org/10.1016/j.chemosphere.2023.138638
  • Liu, F., Wei, B., Cheng, L., Zhao, Y., Liu, X., Yuan, Q., & Liang, H. (2022). Co-immobilizing two glycosidases based on cross-Linked enzyme aggregates to enhance enzymatic properties for achieving high titer icaritin biosynthesis. Journal of Agricultural and Food Chemistry, 70(37), 11631–11642. https://doi.org/10.1021/acs.jafc.2c04253
  • Liu, W., Worms, I. A., Jakšić, Ž., & Slaveykova, V. I. (2022). Aquatic organisms modulate the bioreactivity of engineered nanoparticles: Focus on biomolecular corona. Frontiers in Toxicology, 4, 933186. https://doi.org/10.3389/ftox.2022.933186
  • Loghman, A., Iraj, S. H., Naghi, D. A., & Pejman, M. (2012). Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. African Journal of Biotechnology, 11(22), 6207–6211. https://doi.org/10.5897/AJB11.1768
  • Madakka, M., Rajesh, N., & Rajeswari, J. (2020). Immunocomposition of gastrointestinal tract of gut. Immunotherapy for Gastrointestinal Malignancies, 17–39. https://link.springer.com/chapter/10.1007/978-981-15-6487-1_2
  • Mahdi, M. A., Yousefi, S. R., Jasim, L. S., & Salavati-Niasari, M. (2022). Green synthesis of DyBa2Fe3O7. 988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial activities. International Journal of Hydrogen Energy, 47(31), 14319–14330. https://doi.org/10.1016/j.ijhydene.2022.02.175
  • Mahmoud, U. T. (2012). Silver nanoparticles in poultry production. Journal of Advanced Veterinary Research, 2(4), 303–306. https://advetresearch.com/index.php/AVR/article/view/202
  • Majeed, M., Mundkur, L., Paulose, S., & Nagabhushanam, K. (2022). Novel emblica officinalis extract containing β-glucogallin vs. metformin: A randomized, open-label, comparative efficacy study in newly diagnosed type 2 diabetes mellitus patients with dyslipidemia. Food & Function, 13(18), 9523–9531. https://doi.org/10.1039/D2FO01862D
  • Marappan, G., Beulah, P., Kumar, R. D., Muthuvel, S., & Govindasamy, P. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724–731. https://doi.org/10.3923/ijp.2017.724.731
  • Mittag, A., Singer, A., Hoera, C., Westermann, M., Kämpfe, A., & Glei, M. (2022). Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Particle and Fibre Toxicology, 19(1), 1–15. https://doi.org/10.1186/s12989-022-00479-6
  • Mobasser, S., & Firoozi, A. A. (2016). Review of nanotechnology applications in science and engineering. Journal of Civil Engineering Urban, 6, 84–93. https://www.researchgate.net/profile/Shariat-Mobasser/publication/318752748_Review_of_Nanotechnology_Applications_in_Science_and_Engineering/links/597b4b6a4585151e35c0c379/Review-of-Nanotechnology-Applications-in-Science-and-Engineering.pdf
  • Mortensen, N. P., Pathmasiri, W., Snyder, R. W., Caffaro, M. M., Watson, S. L., Patel, P. R., Beeravalli, L., Prattipati, S., Aravamudhan, S., & Sumner, S. J. (2022). Oral administration of TiO2 nanoparticles during early life impacts cardiac and neurobehavioral performance and metabolite profile in an age- and sex-related manner. Particle and Fibre Toxicology, 19(1), 1–18. https://doi.org/10.1186/s12989-021-00444-9
  • Mushtaq, F., Raza, Z. A., Batool, S. R., Zahid, M., Onder, O. C., Rafique, A., & Nazeer, M. A. (2022). Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International Journal of Biological Macromolecules, 218, 601–633. https://doi.org/10.1016/j.ijbiomac.2022.07.168
  • Nabi, F., Arain, M., Hassan, F., Umar, M., Rajput, N., Alagawany, M., Syed, S., Soomro, J., Somroo, F., & Liu, J. (2020). Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World’s Poultry Science Journal, 76, 459–471. https://doi.org/10.1080/00439339.2020.1789535
  • Nadaf, S. J., Jadhav, N. R., Naikwadi, H. S., Savekar, P. L., Sapkal, I. D., Kambli, M. M., & Desai, I. A. (2022). Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano, 8, 100076. https://www.sciencedirect.com/science/article/pii/S235295202200038X. https://doi.org/10.1016/j.onano.2022.100076
  • Nadugala, B. H., Pagel, C. N., Raynes, J. K., Ranadheera, C., & Logan, A. (2022). The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. International Dairy Journal, 133, 105440. https://doi.org/10.1016/j.idairyj.2022.105440
  • Napagoda, M., Jayathunga, D., & Witharana, S. (2022). Introduction to nanotechnology, nanotechnology in modern medicine. Springer.
  • Nguyen, N. T. T., Nguyen, L. M., Nguyen, T. T. T., Liew, R. K., Nguyen, D. T. C., & Van Tran, T. (2022). Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. Science of the Total Environment, 827, 154160. https://www.sciencedirect.com/science/article/abs/pii/S0048969722012529. https://doi.org/10.1016/j.scitotenv.2022.154160
  • Niemiec, T., Łozicki, A., Pietrasik, R., Pawęta, S., Rygało-Galewska, A., Matusiewicz, M., & Zglińska, K. (2021). Impact of ag nanoparticles (AgNPs) and multimicrobial preparation (EM) on the carcass, mineral, and fatty acid composition of Cornu aspersum aspersum snails. Animals, 11(7), 1926. https://doi.org/10.3390/ani11071926
  • Ognik, K., Stępniowska, A., Cholewińska, E., & Kozłowski, K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Science, 95(9), 2045–2051. https://doi.org/10.3382/ps/pew200
  • Ozkan-Ariksoysal, D. (2022). Current perspectives in graphene oxide-based electrochemical biosensors for cancer diagnostics. Biosensors, 12(8), 607. https://doi.org/10.3390/bios12080607
  • Ozogul, Y., Karsli, G. T., Durmuş, M., Yazgan, H., Oztop, H. M., McClements, D. J., & Ozogul, F. (2022). Recent developments in industrial applications of nanoemulsions. Advances in Colloid and Interface Science, 304, 102685. https://www.sciencedirect.com/science/article/abs/pii/S0001868622000872. https://doi.org/10.1016/j.cis.2022.102685
  • Palomares, R. A. (2022). Trace minerals supplementation with Great Impact on Beef Cattle immunity and health. Animals, 12(20), 2839. https://doi.org/10.3390/ani12202839
  • Pandey, A. K., Kumar, P., & Saxena, M. (2019). Feed additives in animal health. Nutraceuticals in Veterinary Medicine, 345–362. https://link.springer.com/chapter/10.1007/978-3-030-04624-8_23
  • Pasquini, M., Grosjean, N., Hixson, K. K., Nicora, C. D., Yee, E. F., Lipton, M., Blaby, I. K., Haley, J. D., & Blaby-Haas, C. E. (2022). Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Reports, 39(7), 110834. https://doi.org/10.1016/j.celrep.2022.110834
  • Pateiro, M., Gómez, B., Munekata, P. E., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6), 1547. https://doi.org/10.3390/molecules26061547
  • Patra, A., & Lalhriatpuii, M. (2020). Progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding—A review. Biological Trace Element Research, 197(1), 233–253. https://doi.org/10.1007/s12011-019-01959-1
  • Phetsang, S., Jakmunee, J., Mungkornasawakul, P., Laocharoensuk, R., & Ounnunkad, K. (2019). Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly (3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry, 127, 125–135. https://doi.org/10.1016/j.bioelechem.2019.01.008
  • Poddar, K., & Kishore, A. V. (2022). Nanotechnology in animal production, emerging issues in climate smart livestock production. Elsevier.
  • Prabha, A. S., Thangakani, J. A., Devi, N. R., Dorothy, R., Nguyen, T. A., Kumaran, S. S., & Rajendran, S. (2022). Nanotechnology and sustainable agriculture. Nanosensors for Smart Agriculture, Elsevier.
  • Prakash, M., Kavitha, H. P., Abinaya, S., Vennila, J. P., & Lohita, D. (2022). Green synthesis of bismuth based nanoparticles and its applications-A review. Sustainable Chemistry and Pharmacy, 25, 100547. https://doi.org/10.1016/j.scp.2021.100547
  • Prasad, R. D., Sahoo, A., Shrivastav, O. P., Charmode, N., Kamat, R., Kajave, N., Chauhan, J., Banga, S., Tamboli, U., & MS, P. (2022). A review on aspects of nanotechnology in food science and animal nutrition. ES Food & Agroforestry, 8, 12–46.
  • Pundir, C. (2015). Enzyme nanoparticles Preparation, characterisation, properties and applications, micro-nano technologies series, Elsevier. Book. https://www.sciencedirect.com/book/9780323389136/enzyme-nanoparticles
  • Ramasamy, M., Kim, S., Lee, S. S., & Yi, D. K. (2016). Recyclable photo-thermal nano-aggregates of magnetic nanoparticle conjugated gold nanorods for effective pathogenic bacteria lysis. Journal of Nanoscience and Nanotechnology, 16(1), 555–561. https://doi.org/10.1166/jnn.2016.10603
  • Rastogi, S., Kumari, V., Sharma, V., & Ahmad, F. (2022). Gold nanoparticle-based sensors in food safety applications. Food Analytical Methods, 1–17. https://link.springer.com/article/10.1007/s12161-021-02131-z
  • Reddy, I., & Neelima, P. (2022). Neem (Azadirachta indica): A review on medicinal Kalpavriksha. International Journal of Economic Plants, 9(1), 59–63. https://doi.org/10.23910/2/2021.0437d
  • Riley, M. B., Strandquist, E., Weitzel, C. S., & Driskell, J. D. (2022). Structure and activity of native and thiolated α-chymotrypsin adsorbed onto gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 220, 112867. https://doi.org/10.1016/j.colsurfb.2022.112867
  • Rizvi, N. B., Aleem, S., Khan, M. R., Ashraf, S., & Busquets, R. (2022). Quantitative estimation of protein in sprouts of Vigna radiate (mung Beans), lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry methods. Molecules, 27(3), 814. https://doi.org/10.3390/molecules27030814
  • Rossi, B., Toschi, A., Piva, A., & Grilli, E. (2020). Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutrition Research Reviews, 33(2), 218–234. https://doi.org/10.1017/S0954422420000013
  • Sagar, N. A., Kumar, N., Choudhary, R., Bajpai, V. K., Cao, H., Shukla, S., & Pareek, S. (2022). Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packaging and Shelf Life, 34, 100955. https://doi.org/10.1016/j.fpsl.2022.100955
  • Samanta, G., Mishra, S., Behura, N., Sahoo, G., Behera, K., Swain, R., Sethy, K., Biswal, S., & Sahoo, N. (2019). Studies on utilization of calcium phosphate nano particles as source of phosphorus in broilers. Animal Nutrition and Feed Technology, 19(1), 77–88. https://doi.org/10.5958/0974-181X.2019.00008.8
  • Sampath, V., Sureshkumar, S., Seok, W. J., & Kim, I. H. (2023). Role and functions of micro and macro-minerals in swine nutrition: A short review. Journal of Animal Science and Technology, 65(3), 479. https://doi.org/10.5187/jast.2023.e9
  • Sarwar, S., Akram, N. A., Saleem, M. H., Zafar, S., Alghanem, S. M., Abualreesh, M. H., Alatawi, A., Ali, S., & Sarker, U. (2022). Spatial variations in the biochemical potential of okra [abelmoschus esculentus L.(Moench)] leaf and fruit under field conditions. PLoS One, 17(2), e0259520. https://doi.org/10.1371/journal.pone.0259520
  • Schmidt, C. W. (2009). Nanotechnology-related environment, health, and safety research: Examining the national strategy. National Institute of Environmental Health Sciences, 117(4), A158–A161. https://doi.org/10.1289/ehp.117-a158
  • Scott, A., Vadalasetty, K., Łukasiewicz, M., Jaworski, S., Wierzbicki, M., Chwalibog, A., & Sawosz, E. (2018, February). Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. Journal of Animal Physiology and Animal Nutrition, 102(1), e364–e373. https://doi.org/10.1111/jpn.12754
  • Selle, P. H., Cowieson, A. J., & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Science, 124(1–3), 126–141. https://doi.org/10.1016/j.livsci.2009.01.006
  • Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66–105. https://doi.org/10.1080/10408398.2020.1812048
  • Shenashen, M. A., Emran, M. Y., El Sabagh, A., Selim, M. M., Elmarakbi, A., & El-Safty, S. A. (2022). Progress in sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Progress in Materials Science, 124, 100866. https://doi.org/10.1016/j.pmatsci.2021.100866
  • Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Liu, Q., Wang, Q., & Shi, L. (2011). Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Animal Feed Science and Technology, 163(2–4), 136–142. https://doi.org/10.1016/j.anifeedsci.2010.10.016
  • Song, M., Cui, M., Fang, Z., & Liu, K. (2022). Advanced research on extracellular vesicles based oral drug delivery systems. Journal of Controlled Release, 351, 560–572. https://doi.org/10.1016/j.jconrel.2022.09.043
  • Song, X., Fang, C., Yuan, Z.-Q., Li, F.-M., Sardans, J., & Penuelas, J. (2022). Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil. Journal of Environmental Management, 324, 116346. https://doi.org/10.1016/j.jenvman.2022.116346
  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W.-M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P. & Thaden, J. J. (2007). Proposed minimum reporting standards for chemical analysis: Chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2
  • Sung, Y. J., Suk, H.-J., Sung, H. Y., Li, T., Poo, H., & Kim, M.-G. (2013). Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk. Biosensors and Bioelectronics, 43, 432–439. https://doi.org/10.1016/j.bios.2012.12.052
  • Sun, Y., Kinsela, A. S., Cen, X., Sun, S., Collins, R. N., Cliff, D. I., Wu, Y., & Waite, T. D. (2022). Impact of reactive iron in coal mine dust on oxidant generation and epithelial lung cell viability. Science of the Total Environment, 810, 152277. https://doi.org/10.1016/j.scitotenv.2021.152277
  • Taha, A., Casanova, F., Šimonis, P., Jonikaitė-Švėgždienė, J., Jurkūnas, M., Gomaa, M. A., & Stirkė, A. (2022). Pulsed electric field-assisted glycation of bovine serum albumin/starch conjugates improved their emulsifying properties. Innovative Food Science & Emerging Technologies, 82, 103190. https://doi.org/10.1016/j.ifset.2022.103190
  • Tarafdar, J., Sharma, S., & Raliya, R. (2013). Nanotechnology: Interdisciplinary science of applications. African Journal of Biotechnology, 12(3), 219–226. https://doi.org/10.5897/AJB12.2481
  • Tatli Seven, P., Seven, I., Gul Baykalir, B., Iflazoglu Mutlu, S., & Salem, A. Z. (2018). Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science, 17(4), 921–930. https://doi.org/10.1080/1828051X.2018.1448726
  • Thapa, K., Liu, W., & Wang, R. (2022). Nucleic acid‐based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 14(1), e1765. https://doi.org/10.1002/wnan.1765
  • Tian, L., van Putten, R. J., & Gruter, G. J. M. (2022). Plastic pollution. The role of (bio) degradable plastics and other solutions. Biodegradable Polymers in the Circular Plastics Economy, 59–81. https://doi.org/10.1002/9783527827589.ch3
  • Tiwari, P. (2022). Nanotechnologies and sustainable Agriculture for food and nutraceutical production: An update, plant and nanoparticles. Springer.
  • Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., Semeraro, S., Turco, G., Gennaro, R., & Paoletti, S. (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules, 10(6), 1429–1435. https://doi.org/10.1021/bm900039x
  • Turgud, F. K., & Narinç, D. (2022). Influences of dietary supplementation with Maca (Lepidium meyenii) on performance, parameters of growth curve and carcass characteristics in Japanese quail. Animals, 12(3), 318. https://doi.org/10.3390/ani12030318
  • Wang, L., Mello, D. F., Zucker, R. M., Rivera, N. A., Rogers, N. M., Geitner, N. K., Boyes, W. K., Wiesner, M. R., Hsu-Kim, H., & Meyer, J. N. (2021). Lack of detectable direct effects of silver and silver nanoparticles on mitochondria in mouse hepatocytes. Environmental Science & Technology, 55(16), 11166–11175. https://doi.org/10.1021/acs.est.1c02295
  • Wang, B., Wang, H., Li, Y., & Song, L. (2022). Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids in Health and Disease, 21(1), 1–14. https://doi.org/10.1186/s12944-021-01615-5
  • Wang, M., Zhao, J., Jiang, H., & Wang, X. (2022). Tumor-targeted nano-delivery system of therapeutic RNA. Materials Horizons, 9(4), 1111–1140. https://doi.org/10.1039/D1MH01969D
  • Weiss, J., Gibis, M., Schuh, V., & Salminen, H. (2010). Advances in ingredient and processing systems for meat and meat products. Meat Science, 86(1), 196–213. https://doi.org/10.1016/j.meatsci.2010.05.008
  • Wen, H.-W., DeCory, T. R., Borejsza-Wysocki, W., & Durst, R. A. (2006). Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays. Talanta, 68(4), 1264–1272. https://doi.org/10.1016/j.talanta.2005.07.032
  • Xing, Y., Dorey, A., Jayasinghe, L., & Howorka, S. (2022). Highly shape-and size-tunable membrane nanopores made with DNA. Nature Nanotechnology, 17(7), 708–713. https://doi.org/10.1038/s41565-022-01116-1
  • Xiong, R.-G., Zhou, D.-D., Wu, S.-X., Huang, S.-Y., Saimaiti, A., Yang, Z.-J., Shang, A., Zhao, C.-N., Gan, R.-Y., & Li, H.-B. (2022). Health benefits and side effects of short-chain fatty acids. Foods, 11(18), 2863. https://doi.org/10.3390/foods11182863
  • Yan, X., Pan, Z., Chen, S., Shi, N., Bai, T., Dong, L., Zhou, D., White, J. C., & Zhao, L. (2022). Rice exposure to silver nanoparticles in a life cycle study: Effect of dose responses on grain metabolomic profile, yield, and soil bacteria. Environmental Science: Nano, 9(6), 2195–2206. https://doi.org/10.1039/D2EN00211F
  • Yip, Y. J., Lee, S. S. C., Neo, M. L., Teo, S. L.-M., & Valiyaveettil, S. (2022). A comparative investigation of toxicity of three polymer nanoparticles on acorn barnacle (amphibalanus amphitrite). Science of the Total Environment, 806, 150965. https://doi.org/10.1016/j.scitotenv.2021.150965
  • You, C.-C., Miranda, O. R., Gider, B., Ghosh, P. S., Kim, I.-B., Erdogan, B., Krovi, S. A., Bunz, U. H., & Rotello, V. M. (2007). Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’sensors. Nature Nanotechnology, 2(5), 318–323. https://doi.org/10.1038/nnano.2007.99
  • Yun, Y., Cho, Y. W., & Park, K. (2013). Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Advanced Drug Delivery Reviews, 65(6), 822–832. https://doi.org/10.1016/j.addr.2012.10.007
  • Zain, M., Yasmeen, H., Yadav, S. S., Amir, S., Bilal, M., Shahid, A., & Khurshid, M. (2022). Applications of nanotechnology in biological systems and medicine, nanotechnology for hematology, blood transfusion, and artificial blood. Elsevier.
  • Zha, L. Y., Xu, Z. R., Wang, M. Q., & Gu, L. Y. (2008). Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco‐2 cell monolayers. Journal of Animal Physiology and Animal Nutrition, 92(2), 131–140. https://doi.org/10.1111/j.1439-0396.2007.00718.x
  • Zhu, J., Zhang, Z., Wang, R., Zhong, K., Zhang, K., Zhang, N., Liu, W., Feng, F., & Qu, W. (2022). Review of natural phytochemical-based self-assembled nanostructures for applications in medicine. Acs Applied Nano Materials, 5(3), 3146–3169. https://doi.org/10.1021/acsanm.2c00056