474
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Impact of technical progress and fiscal support to agriculture on agricultural carbon emissions

, , , &
Article: 2300186 | Received 14 Jul 2023, Accepted 21 Dec 2023, Published online: 18 Jan 2024

References

  • Adebayo, T. S., & Ullah, S. (2023a). Formulating sustainable development policies for China within the framework of socioeconomic conditions and government stability. Environmental Pollution (Barking, Essex: 1987), 328, 1. https://doi.org/10.1016/j.envpol.2023.121673
  • Adebayo, T. S., & Ullah, S. (2023b). Towards a sustainable future: The role of energy efficiency, renewable energy, and urbanization in limiting CO2 emissions in Sweden. Sustainable Development, 1–16. https://doi.org/10.1002/sd.2658
  • Adebayo, T. S., Kartal, M. T., Ağa, M., & Al-Faryan, M A. b. d S. (2023). Role of country risks and renewable energy consumption on environmental quality: Evidence from MINT countries. Journal of Environmental Management, 327, 116884. https://doi.org/10.1016/j.jenvman.2022.116884
  • Adewale, A. A., & Sunday, A. T. (2023). The potency of resource efficiency and environmental technologies in carbon neutrality target for Finland. Journal of Cleaner Production, 389, 136127. https://doi.org/10.1016/J.JCLEPRO.2023.136127
  • Alexandros, M. T., & Mazharul Anwar, M. (2011). A comparison of DEA and SFA methods: a case study of farm households in Bangladesh. The Journal of Developing Areas, 45(1), 95–14. https://doi.org/10.1353/jda.2011.0004
  • Alola, A. A., & Adebayo, T. S. (2023). Analysing the waste management, industrial and agriculture greenhouse gas emissions of biomass, fossil fuel, and metallic ores utilization in Iceland. The Science of the Total Environment, 887, 164115. https://doi.org/10.1016/j.scitotenv.2023.164115
  • Appiah, D. O., Akondoh, A. C. K., Tabiri, R. K., & Donkor, A. A. (2018). Smallholder farmers’ insight on climate change in rural Ghana. Cogent Food & Agriculture, 4(1), 1436211. https://doi.org/10.1080/23311932.2018.1436211
  • Campbell, C. A., Zentner, R. P., Liang, B.-C., Roloff, G., Gregorich, E. C., & Blomert, B. (2000). Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan – Effect of crop rotations and fertilizers. Canadian Journal of Soil Science, 80(1), 179–192. https://doi.org/10.4141/S99-028
  • Chakrabarti, A. S. (2016). Stochastic Lotka–Volterra equations: A model of lagged diffusion of technology in an interconnected world. North-Holland, 442, 214–223. https://doi.org/10.1016/J.PHYSA.2015.09.030
  • Chang, J. X. (2022). The role of digital finance in reducing agricultural carbon emissions: evidence from China’s provincial panel data. Environmental Science and Pollution Research International, 29(58), 87730–87745. https://doi.org/10.1007/s11356-022-21780-z
  • Chen, P. C., Ming-Miin, Y. U., Chang, C. C., & Hsu, S. H. (2008). Total factor productivity growth in china’s agricultural sector. China Economic Review, 19(4), 580–593. https://doi.org/10.1016/j.chieco.2008.07.001
  • Coelli, T. J., & Rao, D. P. (2005). Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agricultural Economics, 32(s1), 115–134. https://doi.org/10.1111/j.0169-5150.2004.00018.x
  • Dong, W., Chou, J. M., Wang, S., & Fu, Y. (2015). Quantitative analysis of agricultural land use change in China. Physics and Chemistry of the Earth, 87-88, 3–9. https://doi.org/10.1016/j.pce.2015.08.011
  • Eggleston, S. (2006). IPCC guidelines for national greenhouse gas inventories. Energy (Oxf), (2).
  • Ehsan, E., Zainab, K., & Zhang, Z. X. (2022). Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Applied Energy. 309, 118459. https://doi.org/10.1016/J.APENERGY.2021.118459
  • Elahi, E., Khalid, Z., Tauni, M. Z., Zhang, H., & Lirong, X. (2021). Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation, 117(4), 102255. https://doi.org/10.1016/j.technovation
  • Fan, C. Z., & Wei, T. Y. (2016). Effectiveness of integrated low-carbon technologies Evidence from a pilot agricultural experiment in Shanghai. International Journal of Climate Change Strategies and Management, 8(5), 758–776. https://doi.org/10.1108/IJCCSM-04-2015-0045
  • Fei, R. L., & Lin, B. Q. (2017). Technology gap and CO2 emission reduction potential by technical efficiency measures: A meta-frontier modeling for the Chinese agricultural sector. Ecological Indicators. 73, 653–661. https://doi.org/10.1016/j.ecolind.2016.10.021
  • Gu, H. Y. (1994). Discussion on the connotation and function of agricultural technology progress. Agricultural Technology Economy, (4), 24–27.
  • Guan, N. N., Liu, L. Y., Dong, K., Xie, M., & Du, Y. J. (2023). Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food & Agriculture, 9(1), 2238430. https://doi.org/10.1080/23311932.2023.2238430
  • Hayami, Y., & Herdt, R. W. (1977). Market price effects of technological change on income distribution in semisubsistence agriculture. American Journal of Agricultural Economics, 59(2), 245–256. https://doi.org/10.2307/1240014
  • He, Y. (2023). Food security and agriculture value-added: Do they asymmetrically matter for Korean environmental sustainability? Cogent Food Agric, 9, 2213525. https://doi.org/10.1080/23311932
  • He, Y. Q., Cheng, X. Y., & Wang, F. (2022). Regional spillover effects of agricultural carbon emissions from the perspective of technology diffusion. Agro-Technical Economy, (04), 132–144. https://doi.org/10.13246/j.cnki.jae.20211208.003
  • Houghton, R. A. (2002). Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy. Climate Policy, 2(1), 71–88. https://doi.org/10.1016/S1469-3062(02)00012-8
  • Huang, X., Feng, C., Qin, J., Wang, X., & Zhang, T. (2022). Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. The Science of the Total Environment, 829, 154477. https://doi.org/10.1016/j.scitotenv.2022.154477
  • Ismael, M., Srouji, F., & Boutabba, M. A. (2018). Agricultural technologies and carbon emissions: evidence from Jordanian economy. Environmental Science and Pollution Research International, 25(11), 10867–10877. https://doi.org/10.1007/s11356-018-1327-5
  • Jeroen, W., & Neda, Z. (2012). Hegemony and asymmetry: multiple-chessboard games on transboundary rivers. International Environmental Agreement, 12(3), 215–229. https://doi.org/10.1007/s10784-012-9177-y
  • Jin, S. Q., Huang, J. K., Hu, R. F., & Rozelle, S. (2002). The creation and spread of technology and total factor productivity in china’s agriculture. American Journal of Agricultural Economics, 84(4), 916–930. https://doi.org/10.1111/1467-8276.00043
  • Kalirajan, K. P., Obwona, M. B., & Zhao, S. (1996). A decomposition of total factor productivity growth: The case of Chinese agricultural growth before and after reforms. American Journal of Agricultural Economics, 78(2), 331–338. https://doi.org/10.2307/1243706
  • Li, B., Zhang, J. B., & Li, H. P. (2011). Temporal and spatial characteristics and influencing factors of agricultural carbon emissions in China. China’s Population, Resources and Environment, 21(08), 80–86. https://doi.org/10.3969/j.issn.1002-2104.2011.08.013
  • Liu, Q., & Xiao, H. F. (2020). The impact of agricultural land management scale and fiscal support policy on agricultural carbon emissions. Resource Science, 42(6), 1063–1073. https://doi.org/10.18402/resci.2020.06.05
  • Muhammad, I., Sami, U., Asif, R., Cai, J. Y., & Tomiwa, S. A. (2023). Unleashing the dynamic impact of tourism industry on energy consumption, economic output, and environmental quality in China: A way forward towards environmental sustainability. Journal of Cleaner Production, 387, 135778. https://doi.org/10.1016/j.jclepro.2022.135778
  • Özkan, O., Alola, A. A., & Adebayo, T. S. (2023). Environmental benefits of nonrenewable energy efficiency and renewable energy intensity in the USA and EU: Examining the role of clean technologies. Sustainable Energy Technologies and Assessments, 58, 103315. https://doi.org/10.1016/J.SETA.2023.103315
  • Rosario, D. (2020). Tilting at windmills: Global warming and global warnings. Milbank Q, 98(1), 22–25. https://doi.org/10.1111/1468-0009.12447
  • Serra, T., Zilberman, D., Goodwin, B. K., & Hyvonen, K. (2005). Replacement of agricultural price supports by area payments in the European Union and the effects on pesticide use. American Journal of Agricultural Economics, 87(4), 870–884. https://doi.org/10.1111/j.1467-8276.2005.00775.x
  • Song, S. X., Zhang, L., & Ma, Y. X. (2022). Evaluating the impacts of technological progress on agricultural energy consumption and carbon emissions based on multi-scenario analysis. Environmental Science and Pollution Research International, 30(6), 16673–16686. https://doi.org/10.1007/s11356-022-23376-z
  • Taheripour, F., Khanna, M., & Nelson, C. H. (2008). Welfare impacts of alternative public policies for agricultural pollution control in an open economy: A general equilibrium framework. American Journal of Agricultural Economics, 90(3), 701–718. https://doi.org/10.1111/j.1467-8276.2008.01139.x
  • Tian, Y., & Yin, M. H. (2021). Do technological advances promote carbon reduction in agricultural energy? – Based on the test of rebound effect and spatial spillover effect. reform, 2021(12), 45–58. https://xueshu.baidu.com/usercenter/paper/show?paperid=1f6800g0gg790p40wk4a0ea0ha439523&site=xueshu_se&hitarticle=1
  • Tomiwa, S. A., Mustafa, T. K., & Sami, U. (2023). Role of hydroelectricity and natural gas consumption on environmental sustainability in the United States: Evidence from novel time-frequency approaches. Journal of Environmental Management. 328, 116987. https://doi.org/10.1016/j.jenvman.2022.116987
  • Vernon, R. (1982). Agricultural research policy. Minneapolis: University of Minnesota Press.
  • Wang, Y., Zhang, Y. Q., Tian, Y., & Wang, R. (2019). The influencing factors and spatial spillover of agricultural carbon emissions in Chinas major grain producing regions. Journal of Southern Agriculture, 50(7), 1632–1639.
  • Wu, H., Huang, H., Tang, J., Chen, W., & He, Y. (2019). Net greenhouse gas emissions from agriculture in China: Estimation, spatial correlation and convergence. Sustainability, 11(18), 4817. https://doi.org/10.3390/su11184817
  • Wu, W. W. (2019). A study on the carbon emission effects of farmland utilization with a focus on agricultural finance and technological progress. China Land Science, 33(03), 77–84.
  • Wu, Y. G., & Feng, K. W. (2019). Spatial-temporal differentiation features and correlation effects of provincial agricultural carbon emissions in China. Environmental Science and Technology, 42(3), 180–190. https://doi.org/10.19672/j.cnki.1003-6504.2019.03.026
  • Xie, W. W., Deng, H. B., & Wang, N. (2019). Spatial spillover effect of geographical proximity and technological proximity on regional innovation. East China Economic Management, 33(07), 61–67. https://doi.org/10.19629/j.cnki.34-1014/f.180907023
  • Xu, B., & Lin, B. Q. (2017). Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model. Energy Policy, 104, 404–414. https://doi.org/10.1016/j.enpol.2017.02.011
  • Yang, C., Hu, P. Q., Diao, B. D., Cheng, J. H., & Cui, H. Y. (2021). Environmental performance of policies in major grain-producing areas: from the perspective of agricultural carbon emissions. China’s Population, Resources and Environment, 31(12), 35–44.
  • Yang, L., & Li, Z. (2017). Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect. Energy Policy, 101(FEB), 150–161. https://doi.org/10.1016/j.enpol.2016.11.020
  • Zhang, H., Guo, S. D., Qian, Y. B., Liu, Y., & Lu, C. P. (2020). Dynamic analysis of agricultural carbon emissions efficiency in Chinese provinces along the Belt and Road. PloS One, 15(2), e0228223. https://doi.org/10.1371/journal.pone.0228223
  • Zhang, L., Pang, J. X., Chen, X. P., & Lu, Z. M. N. (2019). Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. The Science of the Total Environment, 665, 1017–1025. https://doi.org/10.1016/j.scitotenv.2019.02.162
  • Zhang, Y. Q., Tian, Y., Wang, Y., Wang, R., & Peng, Y. X. (2019). Rural human capital, agricultural technology progress and agricultural carbon release. Science and Technology Management Research, 39(14), 266–274. https://doi.org/10.3969/j.issn.1000-7695.2019.14.035