582
Views
0
CrossRef citations to date
0
Altmetric
Animal Husbandry & Veterinary Science

Therapeutic effect of Morus alba leaf extract and chlorogenic acid on inhibiting the progression of kidney disease

ORCID Icon, , , &
Article: 2301841 | Received 16 Oct 2023, Accepted 31 Dec 2023, Published online: 16 Jan 2024

References

  • Abecassis, M., Bartlett, S. T., Collins, A. J., Davis, C. L., Delmonico, F. L., Friedewald, J. J., Hays, R., Howard, A., Jones, E., Leichtman, A. B., Merion, R. M., Metzger, R. A., Pradel, F., Schweitzer, E. J., Velez, R. L., & Gaston, R. S. (2008). Kidney transplantation as primary therapy for end-stage renal disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQI™) conference. Clinical Journal of the American Society of Nephrology, 3(2), 1–15. https://doi.org/10.2215/CJN.05021107
  • Al-Megrin, W. A., Metwally, D. M., Habotta, O. A., Amin, H. K., Abdel Moneim, A. E., & El-Khadragy, M. (2020). Nephroprotective effects of chlorogenic acid against sodium arsenite-induced oxidative stress, inflammation, and apoptosis. Journal of the Science of Food and Agriculture, 100(14), 5162–5170. https://doi.org/10.1002/jsfa.10565
  • Arfian, N., Wahyudi, D. A. P., Zulfatina, I. B., Citta, A. N., Anggorowati, N., Multazam, A., Romi, M. M., & Sari, D. C. R. (2019). Chlorogenic acid attenuates kidney ischemic/reperfusion injury via reducing inflammation, tubular injury, and myofibroblast formation. BioMed Research International, 2019, 5423703. https://doi.org/10.1155/2019/5423703
  • Bao, L., Li, J., Zha, D., Zhang, L., Gao, P., Yao, T., & Wu, X. (2018). Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. International Immunopharmacology, 54, 245–253. https://doi.org/10.1016/j.intimp.2017.11.021
  • Bolda Mariano, L. N., Cechinel-Zanchett, C. C., Nazário, D., Lupatini, K., & de Souza, P. (2023). Dose-dependent dual effect of Morus nigra L. extract on urinary parameters of hypertensive rats. Chemistry & Biodiversity, 20(5), e202300017. https://doi.org/10.1002/cbdv.202300017
  • Chen, C., Mokhtar, R., A., M., Sani, M., S. A., Noor, & N. Q. I., M. (2022). The effect of maturity and extraction solvents on bioactive compounds and antioxidant activity of mulberry (Morus alba) fruits and leaves. Molecules, 27(8), 1–20. https://doi.org/10.3390/molecules27082406
  • Chen, C., Razali, U. H. M., Saikim, F. H., Mahyudin, A., & Noor, N. Q. I. M. (2021). Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods, 10(3), 1–28. https://doi.org/10.3390/foods10030689
  • Chevalier, R. L., Forbes, M. S., & Thornhill, B. A. (2009). Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney International, 75(11), 1145–1152. https://doi.org/10.1038/ki.2009.86
  • Cho, M. H., Jung, K.-J., Jang, H.-S., Kim, J. I., & Park, K. M. (2012). Orchiectomy attenuates kidney fibrosis after ureteral obstruction by reduction of oxidative stress in mice. American Journal of Nephrology, 35(1), 7–16. https://doi.org/10.1159/000334598
  • Ferri, N., Corsini, A., & Pontremoli, R. (2022). Antihypertensive treatment with calcium channel blockers and renal protection: Focus on lercanidipine and lercanidipine/enalapril. European Review for Medical and Pharmacological Sciences, 26, 7482–7492. https://doi.org/10.26355/eurrev_202210_30018
  • Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for valid histopathologic scoring in research. Veterinary Pathology, 50(6), 1007–1015. https://doi.org/10.1177/0300985813485099
  • Grande, M. T., Pérez-Barriocanal, F., & López-Novoa, J. M. (2010). Role of inflammation in tbulo-interstitial damage associated to obstructive nephropathy. Journal of Inflammation, 7, 19. https://doi.org/10.1186/1476-9255-7-19
  • Gryn-Rynko, A., Bazylak, G., & Olszewska-Slonina, D. (2016). New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves. Biomedicine & Pharmacotherapy, 84, 628–636. https://doi.org/10.1016/j.biopha.2016.09.081
  • Ham, O., Jin, W., Lei, L., Huang, H. H., Tsuji, K., Huang, M., Roh, J., Rosenzweig, A., & Lu, H. A. J. (2018). Pathological cardiac remodeling occurs early in CKD mice from unilateral urinary obstruction, and is attenuated by Enalapril. Scientific Reports, 8(1), 16087. https://doi.org/10.1038/s41598-018-34216-x
  • Hedenqvist, P. (2021). Handbook of laboratory animal science: Essential principles and practices (pp. 343–378). CRC Press.
  • Hesketh, E. E., Vernon, M. A., Ding, P., Clay, S., Borthwick, G., Conway, B., & Hughes, J. (2014). A murine model of irreversible and reversible unilateral ureteric obstruction. Journal of Visualized Experiments, (94), 52559. https://doi.org/10.3791/52559
  • Huang, Y.-R., Wei, Q.-X., Wan, Y.-G., Sun, W., Mao, Z.-M., Chen, H.-L., Meng, X.-J., Shi, X.-M., Tu, Y., & Zhu, Q. (2014). Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril. Journal of Ethnopharmacology, 155(3), 1541–1552. https://doi.org/10.1016/j.jep.2014.07.048
  • Hwang, S. J., Kim, Y. W., Park, Y., Lee, H. J., & Kim, K. W. (2014). Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide- stimulated RAW 264.7 cells. Inflammation Research, 63(1), 81–90. https://doi.org/10.1007/S00011-013-0674-4/FIGURES/7
  • Jan, B., Zahiruddin, S., Basist, P., Irfan, M., Abass, S., & Ahmad, S. (2022). Metabolomic profiling and identification of antioxidant and antidiabetic compounds from leaves of different varieties of Morus alba Linn grown in Kashmir. ACS Omega, 7(28), 24317–24328. https://doi.org/10.1021/acsomega.2c01623
  • Kamińska, J., Dymicka-Piekarska, V., Tomaszewska, J., Matowicka-Karna, J., & Koper-Lenkiewicz, O. M. (2020). Diagnostic utility of protein to creatinine ratio (P/C ratio) in spot urine sample within routine clinical practice. Critical Reviews in Clinical Laboratory Sciences, 57(5), 345–364. https://doi.org/10.1080/10408363.2020.1723487
  • Kant, R., Singh, T. G., & Singh, S. (2020). Mechanistic approach to herbal formulations used for urolithiasis treatment. Obesity Medicine, 19, 100266. https://doi.org/10.1016/j.obmed.2020.100266
  • Khan, M. A., Kassianos, A. J., Hoy, W. E., Alam, A. K., Healy, H. G., & Gobe, G. C. (2022). Promoting plant-based therapies for chronic kidney disease. Journal of Evidence-Based Integrative Medicine, 27, 2515690X221079688. https://doi.org/10.1177/2515690X221079688
  • Khan, S. R., & Canales, B. K. (2023). Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian Journal of Urology, 10(3), 246–257. https://doi.org/10.1016/j.ajur.2023.01.008
  • Kim, D.-S., Kang, Y. M., Jin, W. Y., Sung, Y.-Y., Choi, G., & Kim, H. K. (2014). Antioxidant activities and polyphenol content of Morus alba leaf extracts collected from varying regions. Biomedical Reports, 2(5), 675–680. https://doi.org/10.3892/BR.2014.294
  • Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: An update 2022. Kidney International Supplements, 12(1), 7–11. https://doi.org/10.1016/j.kisu.2021.11.003
  • Lee, J., An, J. N., Hwang, J. H., Lee, H., Lee, J. P., & Kim, S. G. (2019). P38 MAPK activity is associated with the histological degree of interstitial fibrosis in IgA nephropathy patients. PLOS One, 14(3), e0213981. https://doi.org/10.1371/journal.pone.0213981
  • Liao, X., Lv, X., Zhang, Y., Han, Y., Li, J., Zeng, J., Tang, D., Meng, J., Yuan, X., Peng, Z., Tao, L., & Xie, Y. (2022). Fluorofenidone inhibits UUO/IRI-induced renal fibrosis by reducing mitochondrial damage. Oxidative Medicine and Cellular Longevity, 2022, 2453617. https://doi.org/10.1155/2022/2453617
  • Lim, K. C., Yusoff, F. M., Shariff, M., Kamarudin, M. S., & Nagao, N. (2019). Dietary supplementation of astaxanthin enhances hemato-biochemistry and innate immunity of Asian seabass, Lates calcarifer (Bloch, 1790). Aquaculture, 512, 734339. https://doi.org/10.1016/j.aquaculture.2019.734339
  • Liu, D., Cheng, F., Pan, S., & Liu, Z. (2020). Stem cells: A potential treatment option for kidney diseases. Stem Cell Research & Therapy, 11, 1–20. https://doi.org/10.1186/s13287-020-01751-2
  • Ma, G., Chai, X., Hou, G., Zhao, F., & Meng, Q. (2022). Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chemistry, 372, 131335. https://doi.org/10.1016/j.foodchem.2021.131335
  • Martínez-Klimova, E., Aparicio-Trejo, O. E., Tapia, E., & Pedraza-Chaverri, J. (2019). Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments. Biomolecules, 9(4), 141. https://doi.org/10.3390/biom9040141
  • Maya, S., & Pramod, C. (2014). Evaluation of anti-nephrolithiatic activity of ethanolic leaf extract of Morus alba L. in animal models. International Research Journal Of Pharmacy, 5, 427–433. https://doi.org/10.7897/2230-8407.050588
  • Nade, V. S., Kawale, L. A., Bhangale, S. P., & Wale, Y. B. (2013). Cardioprotective and antihypertensive potential of Morus alba L. in isoproterenol-induced myocardial infarction and renal artery ligation-induced hypertension. Journal of Natural Remedies, 13, 54–67.
  • Neamat-Allah, A. N. F., Mahmoud, E. A., & Mahsoub, Y. (2021). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, 108, 147–156. https://doi.org/10.1016/j.fsi.2020.11.028
  • Nematbakhsh, M., Hajhashemi, V., Ghannadi, A., Talebi, A., & Nikahd, M. (2013). Protective effects of the Morus alba L. leaf extracts on cisplatininduced nephrotoxicity in rat. Research in Pharmaceutical Sciences, 8(2), 71–77.
  • Nurul, S. A. S., Hazilawati, H., Mohd, R. S., Mohd, F., H., R., Noordin, M. M., & Norhaizan, M. E. (2018). Subacute oral toxicity assesment of ethanol extract of Mariposa Christia vespertilionis leaves in male Sprague Dawley rats. Toxicological Research, 34(2), 85–95. https://doi.org/10.5487/TR.2018.34.2.085
  • Nwafor, E. O., Lu, P., Zhang, Y., Liu, R., Peng, H., Xing, B., Liu, Y., Li, Z., Zhang, K., Zhang, Y., & Liu, Z. (2022). Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Translational Oncology, 15(1), 101294. https://doi.org/10.1016/j.tranon.2021.101294
  • Owumi, S. E., Olusola, J. K., Arunsi, U. O., & Oyelere, A. K. (2021). Chlorogenic acid abates oxido-inflammatory and apoptotic responses in the liver and kidney of Tamoxifen-treated rats. Toxicology Research, 10(2), 345–353. https://doi.org/10.1093/toxres/tfab002
  • Rapa, S. F., Di Iorio, B. R., Campiglia, P., Heidland, A., & Marzocco, S. (2020). Inflammation and oxidative stress in chronic kidney disease—Potential therapeutic role of minerals, vitamins and plant-derived metabolites. International Journal of Molecular Sciences, 21(1), 263. https://doi.org/10.3390/IJMS21010263
  • Rhee, C. M., & Kovesdy, C. P. (2015). Spotlight on CKD deaths—Increasing mortality worldwide. Nature Reviews. Nephrology, 11(4), 199–200. https://doi.org/10.1038/NRNEPH.2015.25
  • Riffenburgh, R. H., & Gillen, D. L. (2020). Statistics in medicine. Academic Press.
  • Rowley, J. E., Rubenstein, G. E., Manuel, S. L., Johnson, N. L., Surgnier, J., Kapitsinou, P. P., Duncan, F. E., & Pritchard, M. T. (2020). Tissue-specific fixation methods are required for optimal in situ visualization of hyaluronan in the ovary, kidney, and liver. The Journal of Histochemistry and Cytochemistry, 68(1), 75–91. https://doi.org/10.1369/0022155419884879
  • Sánchez-Salcedo, E. M., Mena, P., García-Viguera, C., Hernández, F., & Martínez, J. J. (2015). (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods, 18, 1039–1046. https://doi.org/10.1016/j.jff.2015.03.053
  • Smeets, N. J. L., Schreuder, M. F., Dalinghaus, M., Male, C., Lagler, F. B., Walsh, J., Laer, S., & De Wildt, S. N. (2020). Pharmacology of enalapril in children: a review. Drug Discovery Today, 25(11), 1957–1970. https://doi.org/10.1016/j.drudis.2020.08.005
  • Stefanucci, A., Zengin, G., Llorent-Martinez, E. J., Dimmito, M. P., Della Valle, A., Pieretti, S., Ak, G., Sinan, K. I., & Mollica, A. (2020). Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root’s pulp and peel (Brassica napus L.). Arabian Journal of Chemistry, 13, 7078–7086. https://doi.org/10.1016/j.arabjc.2020.07.013
  • Sun, N., Zhai, L., Li, H., Shi, L., Yao, Z., & Zhang, B. (2016). Angiotensin-converting enzyme inhibitor (ACEI)-mediated amelioration in renal fibrosis involves suppression of mast cell degranulation. Kidney & Blood Pressure Research, 41, (1), 108–118. https://doi.org/10.1159/000368549
  • Sundström, J., Bodegard, J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik, A., Taveira-Gomes, T., Botana, M., Birkeland, K. I., Thuresson, M., Jäger, L., Sood, M. M., VanPottelbergh, G., & Tangri, N. (2022). Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: The CaReMe CKD study. The Lancet Regional Health. Europe, 20, 100438. https://doi.org/10.1016/J.LANEPE.2022.100438
  • Swathi, P., Gana Manjusha, K., Vivekanand, M., Ramkishan, A., & Bhavani, B. (2017). Effect of Morus alba against hyperglycemic and hyperlipidemic activities in streptozotocin induced diabetic nephropathy. Biosciences Biotechnology Research Asia, 14, 1441–1447. https://doi.org/10.13005/bbra/2589
  • Tasanarong, A., Kongkham, S., & Khositseth, S. (2017). Corrigendum to “Dual inhibiting senescence and epithelial-to-mesenchymal transition by erythropoietin preserve tubular epithelial cell regeneration and ameliorate renal fibrosis in unilateral ureteral obstruction”. BioMed Research International, 2017, 1357109. https://doi.org/10.1155/2017/1357109
  • Travers, S., Prot-Bertoye, C., Daudon, M., Courbebaisse, M., & Baron, S. (2023). How to monitor hydration status and urine dilution in patients with nephrolithiasis. Nutrients, 15(7), 1642. https://doi.org/10.3390/nu15071642
  • von Konigslow, T. E., Renaud, D. L., Duffield, T. F., Higginson, V., & Kelton, D. F. (2019). Validation of an automated cell counter to determine leukocyte differential counts in neonatal Holstein calves. Journal of Dairy Science, 102(8), 7445–7452. https://doi.org/10.3168/jds.2019-16370
  • Wang, M., Qin, T., Zhang, Y., Zhang, T., Zhuang, Z., Wang, Y., Ding, Y., & Peng, Y. (2022). Toll-like receptor 4 signaling pathway mediates both liver and kidney injuries in mice with hepatorenal syndrome. American Journal of Physiology. Gastrointestinal and Liver Physiology, 323(5), G461–G476. https://doi.org/10.1152/ajpgi.00048.2022
  • Washino, S., Hosohata, K., & Miyagawa, T. (2020). Roles played by biomarkers of kidney injury in patients with upper urinary tract obstruction. International Journal of Molecular Sciences, 21(15), 1–18. https://doi.org/10.3390/ijms21155490
  • Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. Lancet, 389(10075), 1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5
  • Wu, M. T., Lam, K. K., Lee, W. C., Hsu, K. T., Wu, C. H., Cheng, B. C., Ng, H. Y., Chi, P. J., Lee, Y. T., & Lee, C. T. (2012). Albuminuria, proteinuria, and urinary albumin to protein ratio in chronic kidney disease. Journal of Clinical Laboratory Analysis, 26(2), 82–92. https://doi.org/10.1002/jcla.21487
  • Xu, L., Tan, B., Huang, D., Yuan, M., Li, T., Wu, M., & Ye, C. (2021). Remdesivir inhibits tubulointerstitial fibrosis in obstructed kidneys. Frontiers in Pharmacology, 12, 626510. https://doi.org/10.3389/fphar.2021.626510
  • Yang, Z., Yu, X., Cheng, L., Miao, L., Li, H., Han, L., & Jiang, W. (2013). Effects of enalapril on the expression of cardiac angiotensin-converting enzyme and angiotensin-converting enzyme 2 in spontaneously hypertensive rats. Archives of Cardiovascular Diseases, 106(4), 196–201. https://doi.org/10.1016/j.acvd.2013.01.004
  • Yin, X., He, X., Wu, L., Yan, D., & Yan, S. (2022). Chlorogenic acid, the main antioxidant in coffee, reduces radiation-induced apoptosis and DNA damage via NF-E2-related factor 2 (Nrf2) activation in hepatocellular carcinoma. Oxidative Medicine and Cellular Longevity, 2022, 4566949. https://doi.org/10.1155/2022/4566949
  • Yu, Y., Chen, Y., Shi, X., Ye, C., Wang, J., Huang, J., Zhang, B., & Deng, Z. (2022). Hepatoprotective effects of different mulberry leaf extracts against acute liver injury in rats by alleviating oxidative stress and inflammatory response. Food & Function, 13(16), 8593–8604. https://doi.org/10.1039/d2fo00282e
  • Yuan, Y., Gong, X., Zhang, L., Jiang, R., Yang, J., Wang, B., & Wan, J. (2017). Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. International Immuno­pharmacology, 44, 97–104. https://doi.org/10.1016/j.intimp.2017.01.017
  • Yunus, J., Salman, M., Bamba Ratih Lintin, G., Muchtar, M., Cahyani Ratna Sari, D., Arfian, N., & Mansyur Romi, M. (2020). Chlorogenic acid attenuates kidney fibrosis via antifibrotic action of BMP-7 and HGF. Medical Journal of Malaysia, 75, 5–9.
  • Zakaria, M., & Mohd, M. A. (2015). Traditional Malay medicinal plants. ITBM.
  • Zhang, T., Chen, S., Chen, L., Zhang, L., Meng, F., Sha, S., Ai, C., & Tai, J. (2019). Chlorogenic acid ameliorates lead-induced renal damage in mice. Biological Trace Element Research, 189(1), 109–117. https://doi.org/10.1007/s12011-018-1508-6
  • Zhang, Y., Ma, L., Wu, J., & Chen, T. (2015). Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice. Journal of the Renin-Angiotensin-Aldosterone System, 16(2), 267–274. https://doi.org/10.1177/1470320314568439
  • Zhang, Y., Wu, J., Li, B., & Wang, B. (2013). GW24-e3532 effects of hydronephrosis on cardiac ACE/ACE2 gene expression in mice. Heart, 99, A63–A64. https://doi.org/10.1136/heartjnl-2013-304613.176
  • Zhang, Z., Wang, G., Ma, J., Liu, H., Zhang, X., & Zhu, G. (2013). Effect of Herba centellae on the expression of HGF and MCP-1. Experimental and Therapeutic Medicine, 6(2), 427–434. https://doi.org/10.3892/etm.2013.1146
  • Zhou, Q. Y. J., Liao, X., Kuang, H. M., Li, J. Y., & Zhang, S. H. (2022). LC-MS metabolite profiling and the hypoglycemic activity of Morus alba L. extracts. Molecules, 27(17), 1–14. https://doi.org/10.3390/molecules27175360
  • Zhu, Q., Zhu, Y., Liu, Y., Tao, Y., Lin, Y., Lai, S., Liang, Z., Chen, Y., Chen, Y., & Wang, L. (2022). Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice. Food & Function, 13(13), 6987–6999. https://doi.org/10.1039/d2fo00038e