577
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Genetic analysis and quality assessment of durum wheat (Triticum turgidum L.) landraces in Ethiopia

, &
Article: 2303804 | Received 15 Jun 2023, Accepted 05 Jan 2024, Published online: 06 Feb 2024

References

  • Abinasa, M., Ayana, A., & Bultosa, G. (2011). Genetic variability, heritability and trait associations in durum wheat (Triticum turgidum L. var. durum) genotypes. African Journal of Agricultural Research, 6(17), 1–16.
  • Abinasa, M., Ayana, A., & Bultosa, G. (2012). Variation and association of quality parameters in Ethiopian in durum wheat (Triticum turgidum L.) genotypes. International Journal of Plant Breeding and Genetics, 6(1), 17–31.
  • Alemayehu, Z., Firew, M., Kebebew, A., & Zewdie, B. (2019). Variability in Ethiopian durum wheat under rain fed environment subjected to drought at anthesis. Ethiopian Journal of Agricultural Sciences, 29(2), 17–29.
  • Alemu, A., Feyissa, T., Letta, T., & Abeyo, B. (2020). Genetic diversity and population structure analysis based on the high density SNP markers in Ethiopian durum wheat (Triticum turgidum ssp. durum). BMC Genetics, 21(1), 18. https://doi.org/10.1186/s12863-020-0825-x
  • Allard, R. W. (1960). Principles of plant breeding. John Wiley and Sons. Inc.
  • Almaz, B. (2017). Genetic variability and association of yield and yield related traits in advanced bread wheat (Triticum aestivum L.) lines in Eastern Ethiopia. [Masters of Science thesis] Haramaya University, Ethiopia.
  • Al-Saleh, A., & Brennan, C. S. (2012). Bread wheat quality: some physical, chemical and rheological characteristics of Syrian and English bread wheat samples. Foods (Basel, Switzerland), 1(1), 3–17. https://doi.org/10.3390/foods1010003
  • Amadou, T. S., Tiberio, C., Legesse, W., Seid-Ahmed, K., Rodomiro, O., Maarten, V. G., & Filippo, M. (2019). Durum wheat (Triticum durum desf.): Origin, cultivation and potential expansion in sub-Saharan Africa. Agronomy, 9(5), 263. https://doi.org/10.3390/agronomy9050263
  • Annicchiarico, P., & Pecetti, L. (2003). Developing a tall durum wheat plant type for semi-arid, Mediterranean cereal-livestock farming systems. Field Crops Research, 80(2), 157–164. https://doi.org/10.1016/S0378-4290(02)00173-9
  • Arya, S., Mishra, D., & Bornare, S. (2013). Screening genetic variability in advance lines for drought tolerance of bread wheat (Triticum aestivum). The Bioscan, 8(4), 1193–1196.
  • Arya, V. K., Singh, J., Kumar, L., Sharma, A. K., Kumar, R., Kumar, P., & Chand, P. (2017). Character association and path coefficient analysis in wheat (Triticum aestivum L.). Indian Journal of Agricultural Research, 51(03) https://doi.org/10.18805/ijare.v51i03.7913
  • Asmamaw, M., Keneni, G., & Tesfaye, K. (2019). Genetic diversity of Ethiopian durum wheat (Triticum durum Desf.) landrace collections as reveled by SSR markers. Advances in Crop Science and Technology, 07(01), 413. https://doi.org/10.4172/2329-8863.1000413
  • Ayele, B., Solomon, G., Ammar, K., Nachit, M. M., & Abdalla, O. (2009). Overview of durum wheat research in Ethiopia: challenges and prospects. In Proceedings, Oral Papers and Posters, Technical Workshop, Borlaug Global Rust Initiative (pp. 143–149).
  • Basheer-Salimia, R., & Atawnah, S. (2014). Morphological features, yield components and genetic relatedness of some wheat genotypes grown in Palestine. World Journal of Agricultural Research, 2(1), 12–21.
  • Bemnet, G., Ameha, Y., Alemayehu, Z., Jemanesh, K., & Tekalign, T. (2003). Nitrogen Fertilizer effects on yield and grain quality of durum wheat. Tropical Agriculture, 80(2), 1–6.
  • Bhushan, B., Bharti, S., Ojha, A., Pandey, M., Gourav, S. S., Tyagi, B. S., & Singh, G. (2013). Genetic variability, correlation coefficient and path analysis of some quantitative traits in bread wheat. Journal of Wheat Research, 5(1)
  • Bonjean, A., Angus, W. J., & van Ginkel, M. (2011). The World Wheat Book, a History of Wheat Breeding.
  • Burton, G. W., & Devane, D. E. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 45(10), 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x
  • CSA (Central Statistical Agency). (2018). Report on area and crop production forecast for major grain crops. Statistical Bulletins., 578, Addis Ababa.
  • Dabholkar, A. R. (1992). Elements of biometrical genetics, concept publication (p. 431).
  • Datta, S., & Das, L. (2014). Characterization and genetic variability analysis in Capsicum annuum L. germplasm. SAARC Journal of Agriculture, 11(1), 91–103. https://doi.org/10.3329/sja.v11i1.18387
  • Dawit, T., Tadesse, D., Yigzaw, D., & Share, G. (2012). Genetic variability, correlation and path analysis in durum wheat germplasm (Triticum durum L.). Agricultural Research and Reviews, 107–112.
  • Dragov, R., Uhr, Z., & Dimitrov, E. (2022). Genetic variability, heritability and genetic advance for important quantitative traits of durum wheat: Part I. Bulgaria Journal of Agricultural Science, 28(4), 691–698.
  • Dreccer, M. F., Wockner, K. B., Palta, J. A., McIntyre, C. L., Borgognone, M. G., Bourgault, M., Reynolds, M., & Miralles, D. J. (2014). More fertile florets and grains per spike can be achieved at higher temperature in wheat lines with high spike biomass and sugar content at booting. Functional Plant Biology: FPB, 41(5), 482–495. https://doi.org/10.1071/FP13232
  • Eagles, H. A., Hollamby, G. J., & Eastwood, R. F. (2002). Genetic and environmental variation for grain quality traits routinely evaluated in southern Australian wheat breeding programs. Australian Journal of Agricultural Research, 53(9), 1047–1057. https://doi.org/10.1071/AR02010
  • EBI (Ethiopian Biodiversity Institute). (2008). Ethiopia: Second country report on the state of Plant Resource for Food and Agriculture (PGRFA) to Food and Agricultural Organization (FAO). Addis Ababa, Ethiopia. Available at http://www.pgrfa.org
  • Fehr, W. (1987). Heterosis. In Principles of cultivar development. Theory and technique (vol. I, p. 115). Macmillan Publishing Company.
  • Geneti, G. S., Kebede, S. A., & Mekonnen, T. B. (2022). Genetic variability and association of traits in bread wheat (Triticum aestivum L.) genotypes in Gechi district, South West Ethiopia. Advances in Agriculture, 2022, 1–17. https://doi.org/10.1155/2022/7132424
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley and Sons.
  • González-Ribot, G., Opazo, M., Silva, P., & Acevedo, E. (2017). Traits explaining durum wheat yield in dry Chilean Mediterranean environments. Frontiers in Plant Science, 8, 1781. https://doi.org/10.3389/fpls.2017.01781
  • Gooding, M. J., Pinyosinwat, A., & Ellis, R. H. (2002). Responses of wheat grain yield and quality to seed rate. The Journal of Agricultural Science, 138(3), 317–331. https://doi.org/10.1017/S0021859602002137
  • Graziani, M., Maccaferri, M., Royo, C., Salvatorelli, F., & Tuberosa, R. (2014). Quantitative Trait Locas dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop and Pasture Science, 65(1), 80–95. https://doi.org/10.1071/CP13349
  • Haile, J. K., Hammer, K., Badebo, A., Nachit, M. M., & Röder, M. S. (2013). Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance. Genetic Resources and Crop Evolution, 60(2), 513–527. https://doi.org/10.1007/s10722-012-9855-1
  • Haile, D., Nigussie, D., & Amsalu, A. (2012). Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. Journal of Soil Science and Plant Nutrition, 12(3), 389–409.
  • Hokrani, H., Naik, R., Nadaf, H., Desai, S., Deshpande, S., Kalappanavar, I., & Patil, B. (2013). Genetic studies in free thresh able advanced segregating population of tetraploid wheat (Triticum dicoccum). Karnataka Journal Agricultural Sciences, 26(1), 10–13.
  • ICC (International Association for Cereal Science and Technology). (2000). Standard methods of International Association for Cereal Science and Technology.
  • Ijaz, F., Khaliq, I., & Shahzad, M. (2015). Estimation of heritability for some yield contributing traits in F 2 populations of bread wheat (Triticum aestivum L). Journal of Agriculture Research, 53(2), 25–30.
  • International Grains Council (IGC). (2020). World Grain Statistics 2016. Available: https://www.igc.int/en/subscriptions/subscription.aspx (accessed May 21, 2020).
  • Johnson, H. W., Robinson, H. F., & Comstock, R. F. (1955). Estimates of genetic and environmental variability in Soya bean. Agronomy Journal, 47(7), 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x
  • Kabbaj, H., Sall, A. T., Al-Abdallat, A., Geleta, M., Amri, A., Filali-Maltouf, A., Belkadi, B., Ortiz, R., & Bassi, F. M. (2017). Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of allele’s exchange. Frontiers in Plant Science, 8, 1277. https://doi.org/10.3389/fpls.2017.01277
  • Konopka, I., Tańska, M., & Konopka, S. (2015). Differences of some chemicals and physical properties of winter wheat grain of mealy and vitreous appearance. Cereal Research Communications, 43(3), 470–480. https://doi.org/10.1556/CRC.2014.0048
  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., Aktas, H., Ozer, E., Ozdemir, F., Manickavelu, A., Ban, T., & Vikram, P. (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of Experimental Botany, 66(12), 3477–3486. https://doi.org/10.1093/jxb/erv122
  • Majumder, D. A. N., Shamsuddin, A. K. M., Kabir, M. A., & Hassan, L. (1970). Genetic variability, correlated response and path analysis of yield and yield contributing traits of spring wheat. Journal of the Bangladesh Agricultural University, 6(2), 227–234. https://doi.org/10.3329/jbau.v6i2.4815
  • Malbhage, A. B., Talpada, M. M., Shekhawat, V. S., & Mehta, D. R. (2020). Genetic variability, heritability and genetic advance in durum wheat (Triticum durum L.). Journal of Pharmacognosy and Phytochemistry, 9(4), 3233–3236.
  • Manel, S., Leila, H., Abdelmalek, O., Amar, B., & Abdelkader, B. (2015). Phenotypic variability and selection agronomic characters of wheat hard (Triticum turgidum Desf.). Under Conditions Semi-Arid
  • Mansouri, A., Oudjehih, B., Benbelkacem, A., Fellahi, Z. E. A., & Bouzerzour, H. (2018). Variation and relationships among agronomic traits in durum wheat (Triticum turgidum L.) under South mediterranean growth conditions: Stepwise and Path Analyses. International Journal of Agronomy, 2018, 1–11. https://doi.org/10.1155/2018/8191749
  • Mayur, D., Abhay, D., Saiprasad, S. V., Divya, A., Prakash, M., Urmila, C., Neetu, Y., & Anshul, M. (2021). Genetic variability, heritability and genetic advance in durum wheat (Triticum durum) genotypes. The Pharma Innovation Journal, 10(9), 221–224. 2021 P:
  • Mengistu, K., Kidane, G., Catellani, M., Frascaroli, E., Fadda, C., Pè, M. E., & Dell’Acqua, M. (2016). High density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding. Plant Biotechnology Journal, 14(9), 1800–1812. https://doi.org/10.1111/pbi.12538
  • Mengistu, D. K., Kidane, Y. G., Fadda, C., & Pè, M. E. (2018). Genetic diversity in Ethiopian durum wheat inferred from phenotypic variations. Plant Genetic Resources: Characterization and Utilization, 16(1), 39–49. https://doi.org/10.1017/S1479262116000393
  • Miller, P. A., Williams, H. C., Robinson, H. F., & Comstock, R. E. (1993). Estimates of genotypic and environmental variances and co-variances in upland cotton and their implication in selection. Agronomy Journal, 43, 115–121.
  • Mohammadi-Joo, S., Mirasi, A., Saeidi-Aboeshaghi, R., & Amiri, M. (2015). Evaluation of bread wheat (Triticum aestivum L.) genotypes based on resistance indices under field conditions. International Journal of Bioscience, 6(2), 331–337.
  • Moragues, M., Zarco-Hernández, J., Moralejo, M. A., & Royo, C. (2006). Genetic diversity of protein subunits composition in durum wheat landraces (Triticum turgidum) from the Mediterranean basin. Genetic Resources and Crop Evolution, 53(5), 993–1002. https://doi.org/10.1007/s10722-004-7367-3
  • Nwangburuk, C. C., & Denton, O. A. (2012). Inheritance of yield related traits in maize under normal and drought conditions. International Journal of Agricultural Research, 7(7), 367–375. https://doi.org/10.3923/ijar.2012.367.375
  • Özbek, Ö., Taşkın, B. G., Şan, S. K., Eser, V., & Arslan, O. (2011). Gliadin polymorphism in Turkish cultivated emmer wheat landraces. Plant Systematics and Evolution, 296(1-2), 121–135. https://doi.org/10.1007/s00606-011-0481-8
  • Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V., & García del Moral, L. F. (2003). Durum wheat quality in Mediterranean environments; Influence of climatic variables and relationships between quality parameters. Field Crops Research, 80(2), 133–140. https://doi.org/10.1016/S0378-4290(02)00177-6
  • Saeed, M., Khalil, I., Nayab, D., Anjum, S., & Tanveer, M. (2016). Combining ability and heritability for yield traits in wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Sciences, 53(03), 577–583. https://doi.org/10.21162/PAKJAS/16.2036
  • Safi, L., Singh, R., & Abraham, T. (2017). Assessment of Heritability and Genetic Parameters in Wheat Based on Agronomic and Morphological Traits, 6(5), 18–21.
  • SAS (Statistical Analysis System) Institute. (2002). SAS System for windows, Version 9.00.
  • Shimelis, Y., Mohammed, W., & Letta, T. (2018). Genetic variability and diversity studies in Durum wheat (Triticum turgidum L. var. durum) genotypes based on cluster analysis using agronomic and quality traits in Southern Ethiopia. Journal of Plant Breeding and Crop Science, 10(5), 99–104.
  • Sivasubramanian, S., & Menon, M. (1973). Heterosis and in breeding depression in rice. Madras Agricultural Journal, 60(7), 1139–1140.
  • Sopiwnyk, E. (2018). Durum production and consumption, a global perspective. In Sustainable Production of Durum Wheat in Canada (pp. 5–9). Barilla America Inc.
  • Soriano, J. M., Villegas, D., Sorrells, M. E., & Royo, C. (2018). Durum wheat landraces from east and west regions of the Mediterranean basin are genetically distinct for yield components and phenology. Frontiers in Plant Science, 9, 80. https://doi.org/10.3389/fpls.2018.00080
  • Stamatov, S., Andonov, B., Chipilski, R., & Deshev, M. (2018). Genetic variability and genetic advance of the parameters of water exchange in peanut varieties (Arachis hypogaea L.) from the Bulgarian Selection. JOJ Horticulture & Arboriculture, 1(3), 555563. IDhttps://doi.org/10.19080/JOJHA.2018.01.555563
  • Stamatov, S., Ishpekov, S., Deshev, M., Vankova, E., & Dallev, M. (2020). Seed retaining model of non-dehiscence sesame (Sesamum indicum L.) Genotype at Ripening. Scientific Papers. Series A. Agronomy, 63(1), 541–546.
  • Taneva, K., Bozhanova, V., & Petrova, I. (2019). Variability, heritability and genetic advance of some grain quality traits and grain yield in durum wheat genotypes. Bulgarian Journal of Agricultural Science, 25(2), 288–295.
  • Temesgen, D., Behailu, M., Teklehaimanot, H., Mulatu, G., Rodomiro, O., & Kassahun, T. (2023). Genetic diversity of durum wheat (Triticum turgidum L. ssp. durum, Desf) germplasm as revealed by morphological and SSR markers. Genes, 14(6), 1155.
  • Tesfaye, T., Getachew, B., & Worede, M. (2008). Morphological diversity in tetraploid wheat Landrace populations from the central highlands of Ethiopia. Hereditas, 114(2), 171–176. https://doi.org/10.1111/j.1601-5223.1991.tb00321.x
  • Tilahun, G., Feyissa, T., Kedir, N., Genene, G., Habtamu, S., Ashinie, B., & Abdo, W. (2008). Recommendations of production management practices. In: Fifteen years achievements. Oromia Agricultural Research Institute, Sinana Agricultural Research Center (pp. 39–46).
  • Tiwari, D., Pandey, P., Tripathi, S., Giri, S., & Dwivedi, J. (2012). Studies on genetic variability for yield components in rice (Oryza sativa L.). AAB Bioflux, 3(1), 76–81.
  • USDA. (2021). United States Department of Agriculture. https://apps.fas.usda.gov/psdonline/circulars/production.pdf
  • Verma, P. N., Singh, B. N., & Yadav, R. K. (2013). Genetic variability and divergence analysis of yield and its contributing traits under sodic soil condition in wheat. International Journal of Agricultural Sciences, 3(2), 395–399.
  • Wolde, T., Eticha, F., Alamerew, S., Assefa, E., & Dutamo, D. (2016). Genetic variability, heritability and genetic advance for yield and yield related traits in durum wheat (Triticum durum L.) accessions. Sky J. Agril. Res, 5(3), 42–47.
  • Zaïm, M., El Hassouni, K., Gamba, F., Filali-Maltouf, A., Belkadi, B., Sourour, A., Amri, A., Nachit, M., Taghouti, M., & Bassi, F. M. (2017). Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability and industrial quality across Mediterranean sites. Field Crops Research, 214, 219–227. https://doi.org/10.1016/j.fcr.2017.09.007