762
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Optimization of ultrasound-assisted phytomolecules extraction from moringa leaves (Moringa oleifera Lam) using response surface methodology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2309834 | Received 17 Oct 2023, Accepted 20 Jan 2024, Published online: 15 Feb 2024

References

  • Abed, S. S., Kiranmayi, P., Imran, K., Lateef, S. S., & Abed Sr, S. S. (2023). Gas chromatography-mass spectrometry (GC-MS) metabolite profiling of Citrus limon (L.) osbeck juice extract evaluated for its antimicrobial activity against. Streptococcus mutans. Cureus, 15(1), 1. https://doi.org/10.7759/cureus.33585
  • Aggarwal, K., Singh, M., & Zalpouri, R. (2021). Effect of treatment and drying method (Solar and convective) on physico-chemical quality of dried moringa leaves. International Journal of Agricultural Sciences, 17(2), 228–18. https://doi.org/10.15740/HAS/IJAS/17.2/228-233
  • Ahmad, N., Zuo, Y., Lu, X., Anwar, F., & Hameed, S. (2016). Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chemistry, 190, 80–89. https://doi.org/10.1016/j.foodchem.2015.05.077
  • Albarri, R., & Şahin, S. (2021). Kinetics, thermodynamics, and mass transfer mechanism of the ultrasound-assisted extraction of bioactive molecules from Moringa oleifera leaves. Biomass Conversion and Biorefinery, 13(9), 7919–7926. https://doi.org/10.1007/s13399-021-01686-5
  • Ali, M. A., Yusof, Y. A., Chin, N. L., Ibrahim, M. N., & Basra, S. M. A. (2014). Drying kinetics and colour analysis of Moringa oleifera leaves. Agriculture and Agricultural Science Procedia, 2, 394–400. https://doi.org/10.1016/j.aaspro.2014.11.055
  • Alkafafy, M. E., Sayed, S. M., El-Shehawi, A. M., El-Shazly, S., Farouk, S., Alotaibi, S. S., Madkour, D. A., Orabi, S. H., Elbaz, H. T., & Ahmed, M. M. (2021). Moringa oleifera ethanolic extract ameliorates the testicular dysfunction resulted from HFD-induced obesity rat model. Andrologia, 53(8), e14126. https://doi.org/10.1111/and.14126
  • Alves, G. H., Ferreira, C. D., Vivian, P. G., Monks, J. L. F., Elias, M. C., Vanier, N. L., & de Oliveira, M. (2016). The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chemistry, 208, 116–123. https://doi.org/10.1016/j.foodchem.2016.03.107
  • Alvin, A., Miller, K. I., & Neilan, B. A. (2014). Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological Research, 169(7–8), 483–495. https://doi.org/10.1016/j.micres.2013.12.009
  • Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096
  • Baothman, O. A., Altayb, H. N., Zeyadi, M. A., Hosawi, S. B., & Abo-Golayel, M. K. (2023). Phytochemical analysis and nephroprotective potential of Ajwa date in doxorubicin-induced nephrotoxicity rats: Biochemical and molecular docking approaches. Food Science & Nutrition, 11(3), 1584–1598. https://doi.org/10.1002/fsn3.3199
  • Bharali, R., Tabassum, J., & Azad, M. R. H. (2003). Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pacific Journal of Cancer Prevention, 4(2), 131–140.
  • Bozinou, E., Karageorgou, I., Batra, G., G. Dourtoglou, V., & I. Lalas, S. (2019). Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: A comparative study with other extraction techniques. Beverages, 5(1), 8. https://doi.org/10.3390/beverages5010008
  • Brintha, S., Rajesh, S., Renuka, R., Santhanakrishnan, V., & Gnanam, R. (2017). Phytochemical analysis and bioactivity prediction of compounds in methanolic extracts of Curculigo orchioides Gaertn. Journal of Pharmacognosy and Phytochemistry, 6(4), 192–197.
  • Castillo-Lopez, R. I., Leon-Felix, J., Angulo-Escalante, M., Gutierrez-Dorado, R., Muy-Rangel, M. D., & Heredia, J. B. (2017). Nutritional and phenolic characterization of Moringa oleifera leaves grown in Sinaloa, Mexico. Pakistan Journal of Botany, 49(1), 161–168.
  • Castro-López, C., Ventura-Sobrevilla, J. M., González-Hernández, M. D., Rojas, R., Ascacio-Valdés, J. A., Aguilar, C. N., & Martínez-Ávila, G. C. (2017). Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chemistry, 237, 1139–1148. https://doi.org/10.1016/j.foodchem.2017.06.032
  • Chavan, J. J., Gaikwad, N. B., Kshirsagar, P. R., & Dixit, G. B. (2013). Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. South African Journal of Botany, 88, 273–277. https://doi.org/10.1016/j.sajb.2013.08.007
  • Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
  • Cho, W.-Y., Kim, D.-H., Lee, H.-J., Yeon, S.-J., & Lee, C.-H. (2020). Journal of food quality evaluation of effect of extraction solvent on selected properties of olive leaf extract. Journal of Food Quality, 2020, 1–7. https://doi.org/10.1155/2020/3013649
  • Dadi, D. W., Emire, S. A., Hagos, A. D., & Eun, J. B. (2019). Effect of ultrasound-assisted extraction of Moringa stenopetala leaves on bioactive compounds and their antioxidant activity. Food Technology and Biotechnology, 57(1), 77–86. https://doi.org/10.17113/ftb.57.01.19.5877
  • Daghaghele, S., Kiasat, A. R., Safieddin Ardebili, S. M., & Mirzajani, R. (2021). Intensification of extraction of antioxidant compounds from Moringa oleifera leaves using ultrasound-assisted approach: BBD-RSM design. International Journal of Fruit Science, 21(1), 693–705. https://doi.org/10.1080/15538362.2021.1926396
  • Desta, K. T., Kim, G. S., Kim, Y. H., Lee, W. S., Lee, S. J., Jin, J. S., Abd El-Aty, A., Shin, H. C., Shim, J. H., & Shin, S. C. (2016). The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomedical Chromatography: BMC, 30(2), 225–231. https://doi.org/10.1002/bmc.3539
  • Divyalakshmi, M., & Thoppil, J. (2022). Molecular docking of phytochemicals against breast cancer: a review. Plant Archives (09725210), 22(2), 163–173. https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.029
  • Dolatowski, Z. J., Stadnik, J., & Stasiak, D. (2007). Applications of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3), 88–99.
  • Evans, J. R., & Lawrenson, J. G., Cochrane Eyes and Vision Group. (2017). Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database of Systematic Reviews, 2017(7), 1–52. Art. No.: CD00025. https://doi.org/10.1002/14651858.CD000253.pub4
  • Ezez, D., Mekonnen, N., & Tefera, M. (2023). Phytochemical analysis of Withania somnifera leaf extracts by GC-MS and evaluating antioxidants and antibacterial activities. International Journal of Food Properties, 26(1), 581–590. https://doi.org/10.1080/10942912.2023.2173229
  • Geankoplis, C. J., Hersel, A. A., & Lepek, D. H. (2018). Transport processes and separation process principles (5th ed.). Prentice Hall. ISBN 9780134181028.
  • Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994. https://doi.org/10.1021/jf9001439
  • Ibrahim, O. H., & Abdul-Hafeez, E. Y. (2023). The acetone extract of albizia lebbeck stem bark and its in vitro cytotoxic and antimicrobial activities. Horticulturae, 9(3), 385. https://doi.org/10.3390/horticulturae9030385
  • Jin, W. B., Xu, C., Cheung, Q., Gao, W., Zeng, P., Liu, J., Chan, E. W. C., Leung, Y.-C., Chan, T. H., Wong, K.-Y., Chen, S., & Chan, K.-F. (2020). Bioisosteric investigation of ebselen: Synthesis and in vitro characterization of 1, 2-benzisothiazol-3 (2H)-one derivatives as potent New Delhi metallo-β-lactamase inhibitors. Bioorganic Chemistry, 100, 103873. https://doi.org/10.1016/j.bioorg.2020.103873
  • Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, 137, 1–11. https://doi.org/10.1016/j.cep.2019.01.006
  • Karabegović, I. T., Stojičević, S. S., Veličković, D. T., Nikolić, N. Č., & Lazić, M. L. (2013). Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology, 120, 429–436. https://doi.org/10.1016/j.seppur.2013.10.021
  • Kilany, O. E., Abdelrazek, H. M. A., Aldayel, T. S., Abdo, S., & Mahmoud, M. M. A. (2020). Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi Journal of Biological Sciences, 27(10), 2733–2746. https://doi.org/10.1016/j.sjbs.2020.06.026
  • Kowalczyk, P., & Kulig, K. (2014). GABA system as a target for new drugs. Current Medicinal Chemistry, 21(28), 3294–3309. https://doi.org/10.2174/0929867321666140601202158
  • Lasta, H. F. B., Lentz, L., Rodrigues, L. G. G., Mezzomo, N., Vitali, L., & Ferreira, S. R. S. (2019). Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatalysis and Agricultural Biotechnology, 21, 101353. https://doi.org/10.1016/j.bcab.2019.101353
  • Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., & Liu, D. (2008). Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrasonics Sonochemistry, 15(3), 227–232. https://doi.org/10.1016/j.ultsonch.2007.03.006
  • Majumder, R., Dhara, M., Adhikari, L., Ghosh, G., & Pattnaik, S. (2019). Evaluation of in vitro antibacterial and antioxidant activity of aqueous extracts of Olax psittacorum. Indian Journal of Pharmaceutical Sciences, 81(1), 99–109. https://doi.org/10.4172/pharmaceutical-sciences.1000484
  • Mason, T. J., Paniwnyk, L., & Lorimer, J. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3(3), S253–S260. https://doi.org/10.1016/S1350-4177(96)00034-X
  • Mehta, K., Balaraman, R., Amin, A., Bafna, P., & Gulati, O. (2003). Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. Journal of Ethnopharmacology, 86(2–3), 191–195. https://doi.org/10.1016/s0378-8741(03)00075-8
  • Michel, S., Baraka, L. F., Ibañez, A. J., & Mansurova, M. (2021). Mass spectrometry-based flavor monitoring of Peruvian chocolate fabrication process. Metabolites, 11(2), 71. https://doi.org/10.3390/metabo11020071
  • Mohammad, H., Prabhu, K., Rao, M. R. K., Sundaram, R. L., Shil, S., & Vijayalakshmi, N. (2019). The GC MS studies of one Ayurvedic medicine, Amritarishtam. Research Journal of Pharmacy and Technology, 12(1), 351–356. https://doi.org/10.5958/0974-360X.2019.00064.7
  • Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera: a multipurpose tree for the dry tropics. Revista Mexicana de Biodiversidad, 82(4), 1071–1082. https://doi.org/10.22201/ib.20078706e.2011.4.678
  • Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2), 129–133. https://doi.org/10.1016/S0255-2701(02)00037-5
  • Pollini, L., Tringaniello, C., Ianni, F., Blasi, F., Manes, J., & Cossignani, L. (2020). Impact of ultrasound extraction parameters on the antioxidant properties of Moringa oleifera leaves. Antioxidants, 9(4), 277. https://doi.org/10.3390/antiox9040277
  • Rajalakshmi, R., Vaidehi, J., & Krishnappa, K. (2022). The naturally available phyto-products of Indian medicinal plants against adulticidal activity of human vector mosquitoes. Uttar Pradesh Journal of Zoology, 43(24), 80–87. https://doi.org/10.56557/upjoz/2022/v43i243298
  • Rakesh, B., Bindu, K. H., & Praveen, N. (2021). Variations in the L-DOPA content, phytochemical constituents and antioxidant activity of different germlines of Mucuna pruriens (L.) DC. Asian Journal of Chemistry, 33(8), 1881–1890. https://doi.org/10.14233/ajchem.2021.23293
  • Ramić, M., Vidović, S., Zeković, Z., Vladić, J., Cvejin, A., & Pavlić, B. (2015). Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrasonics Sonochemistry, 23, 360–368. https://doi.org/10.1016/j.ultsonch.2014.10.002
  • Ren, J., Wang, J., Karthikeyan, S., Liu, H., & Cai, J. (2019). Natural anti-phytopathogenic fungi compound phenol, 2, 4-bis (1, 1-dimethylethyl) from Pseudomonas fluorescens TL-1. Indian Journal of Biochemistry & Biophysics, 56(2), 162–168.
  • Rodríguez-Pérez, C., Gilbert-López, B., Mendiola, J. A., Quirantes-Piné, R., Segura-Carretero, A., & Ibáñez, E. (2016). Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis, 37(13), 1938–1946. https://doi.org/10.1002/elps.201600071
  • Şahin, S. (2015). A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean Journal of Chemical Engineering, 32(5), 950–957. https://doi.org/10.1007/s11814-014-0293-y
  • Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., Ferreira, I. C. F. R., Gonçalves, O. H., Bona, E., da Silva, M. V., & Leimann, F. V. (2018). Systematic study on the extraction of antioxidants from pinhão (araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057
  • Sbayou, H., Oubrim, N., Bouchrif, B., Ababou, B., Boukachabine, K., & Amghar, S. (2014). Chemical composition and antibacterial activity of essential oil of Origanum compactum against foodborne bacteria. International Journal of Engineering Research and Technology, 3(1), 3562–3567.
  • Senthil, J., Rameashkannan, M., & Mani, P. (2016). Phytochemical profiling of ethanolic leaves extract of Ipomoea sepiaria (Koenig Ex. Roxb). International Journal of Innovative Research in Science, Engineering and Technology, 5(3), 3140–3147.
  • Setyaningsih, W., Saputro, I. E., Carrera, C. A., & Palma, M. (2019). Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chemistry, 288, 221–227. https://doi.org/10.1016/j.foodchem.2019.02.107
  • Setyani, W., Murwanti, R., Sulaiman, T. N. S., & Hertiani, T. (2023). Application of Response Surface Methodology (RSM) for the optimization of ultrasound-assisted extraction (UAE) of Moringa oleifera: Extraction yield, content of bioactive compounds, and biological effects in vitro. Plants, 12(13), 2455. https://doi.org/10.3390/plants12132455
  • Sheik, A., Kim, E., Adepelly, U., Alhammadi, M., & Huh, Y. S. (2023). Antioxidant and antiproliferative activity of Basella alba against colorectal cancer. Saudi Journal of Biological Sciences, 30(4), 103609. https://doi.org/10.1016/j.sjbs.2023.103609
  • Siddhuraju, P., & Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155. https://doi.org/10.1021/jf020444+
  • Singh, B. N., Singh, B., Singh, R., Prakash, D., Dhakarey, R., Upadhyay, G., & Singh, H. (2009). Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47(6), 1109–1116. https://doi.org/10.1016/j.fct.2009.01.034
  • Suslick, K. S., Hammerton, D. A., & Cline, R. E. (1986). Sonochemical hot spot. Journal of the American Chemical Society, 108(18), 5641–5642. https://doi.org/10.1021/ja00278a055
  • Utharalakshmi, N., Kumar, A. G., & Narendrakumar, G. (2015). Optimization of cellulase producing Aspergillus flavus SB4 by solid state fermentation using response surface methodology (RSM)-CCD. Research Journal of Pharmacy and Technology, 8(4), 349. https://doi.org/10.5958/0974-360X.2015.00058.X
  • Uysal, S., Cvetanović, A., Zengin, G., Zeković, Z., Mahomoodally, M. F., & Bera, O. (2019). Optimization of maceration conditions for improving the extraction of phenolic compounds and antioxidant effects of Momordica charantia L. leaves through response surface methodology (RSM) and artificial neural networks (ANNs). Analytical Letters, 52(13), 2150–2163. https://doi.org/10.1080/00032719.2019.1599007
  • Vaishnav, A., Chandy, A., Jhade, D., & Rai, S. (2011). Pharmacognostical and Preliminary Phytochemical Studies on Moringa olifera Leaves. Research J. Pharmacognosy and Phytochemistry, 3(6), 272–274.
  • Van, H. T., Tran, M. D., Tran, T. K. N., Nguyen, H. T.-D., Nguyen, N.-A., Huynh, N. T. A., Le, V. S., Nguyen, Q. H., Le, T. T., Nguyen Phi, N., & Pham, T.-V. (2023). Chemical profiles and antibacterial activity of acetone extract of two Curcuma species from Vietnam. Plant Science Today, 10(2), 83–89. https://doi.org/10.14719/pst.1993
  • Vázquez-Espinosa, M., V. González-de-Peredo, A., Espada-Bellido, E., Ferreiro-González, M., Toledo-Domínguez, J. J., Carrera, C., Palma, M., & F. Barbero, G. (2019). Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia Melanocarpa L.): Optimization of the individual and simultaneous extraction methods. Agronomy, 9(8), 456. https://doi.org/10.3390/agronomy9080456
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, 8(3), 303–313. https://doi.org/10.1016/s1350-4177(01)00071-2
  • Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566–571. https://doi.org/10.1016/j.indcrop.2012.09.021
  • Wang, T. Y., Li, Q., & Bi, K. S. (2018). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences, 13(1), 12–23. https://doi.org/10.1016/j.ajps.2017.08.004
  • Wang, Y., Gao, Y., Ding, H., Liu, S., Han, X., Gui, J., & Liu, D. (2017). Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry, 218, 152–158. https://doi.org/10.1016/j.foodchem.2016.09.058
  • Wen, C., Zhang, J., Zhang, H., Dzah, C. S., Zandile, M., Duan, Y., Ma, H., & Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrasonics Sonochemistry, 48, 538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018
  • Xie, P. J., Huang, L. X., Zhang, C. H., Ding, S. S., Deng, Y. J., & Wang, X. J. (2018). Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Industrial Crops and Products, 111, 238–246. https://doi.org/10.1016/j.indcrop.2017.10.017
  • Xu, Y.-B., Chen, G. L., & Guo, M. Q. (2019). Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants, 8(8), 296. https://doi.org/10.3390/antiox8080296
  • Yassin, S., Abubker, M., Mohamed, A., Omer, S., Humeada, S., Ahmed, E. M., & Alrahman, M. A. (2022). Antibacterial, Antioxidant Activities and GC-MS Analysis of Dichrostachys cinera (L.) Ethanolic Leaves Extract. Pharmacology & Pharmacy, 13(12), 545–557. https://doi.org/10.4236/pp.2022.1312039
  • Yerena-Prieto, B. J., Gonzalez-Gonzalez, M., Vázquez-Espinosa, M., González-de-Peredo, A. V., García-Alvarado, M. Á., Palma, M., Rodríguez-Jimenes, G. d C., & Barbero, G. F. (2022). Optimization of an ultrasound-assisted extraction method applied to the extraction of flavonoids from Moringa leaves (Moringa oleífera Lam.). Agronomy, 12(2), 261. https://doi.org/10.3390/agronomy12020261
  • Zhang, L., Zhou, C., Wang, B., Yagoub, A. E.-G A., Ma, H., Zhang, X., & Wu, M. (2017). Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrasonics Sonochemistry, 37, 106–113. https://doi.org/10.1016/j.ultsonch.2016.12.034
  • Zhao, B., Deng, J., Li, H., He, Y., Lan, T., Wu, D., Gong, H., Zhang, Y., & Chen, Z. (2019). Optimization of phenolic compound extraction from Chinese Moringa oleifera leaves and antioxidant activities. Journal of Food Quality, 2019, 1–13. https://doi.org/10.1155/2019/5346279