700
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

GIS based annual soil loss estimation with revised universal soil loss equation (RUSLE) in the upper Meki sub-catchment, rift valley sub-basin, Ethiopia

ORCID Icon, & ORCID Icon
Article: 2311802 | Received 30 Nov 2023, Accepted 23 Jan 2024, Published online: 18 Feb 2024

Reference

  • Adediji, A., Tukur, A. M., & Adepoju, K. A. (2010). Assessment of revised universal soil loss equation (RUSLE) in Katsina area, Katsina state of Nigeria using remote sensing (RS) and geographic information system (GIS). Iranian (Iranica) Journal of Energy & Environment, 1(3), 1–18.
  • Alewoye Getie, M., Legesse, S. A., Mekonnen, M., & Aschalew, A. (2020). Soil properties and crop productivity strategies as a potential climate variability adaptation options in Adefwuha Watershed, Ethiopia. Earth Systems and Environment, 4(2), 359–368. https://doi.org/10.1007/s41748-020-00156-8
  • Alexakis, D. D., Hadjimitsis, D. G., & Agapiou, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmospheric Research, 131, 108–124. https://doi.org/10.1016/j.atmosres.2013.02.013
  • Alexandridis, T. K., Sotiropoulou, A. M., Bilas, G., Karapetsas, N., & Silleos, N. G. (2015). The effects of seasonality in estimating the C-factor of soil erosion studies. Land Degradation & Development, 26(6), 596–603. https://doi.org/10.1002/ldr.2223
  • Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Junior, J. M., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. International Soil and Water Conservation Research, 7(4), 325–334. https://doi.org/10.1016/j.iswcr.2019.08.005
  • Andrew, A., Ajiboye, J. O., Ibrahim, E. S., Gajere, E. N., Itse, A., & Shaba, H. A. (2022). Soil loss estimation using remote sensing and RUSLE model in Koromi-Federe catchment area of jos-east LGA, Plateau State, Nigeria.
  • Andualem, T. G., Hagos, Y. G., Kefale, A., & Zelalem, B. (2020). Soil erosion-prone area identification using multi-criteria decision analysis in Ethiopian highlands. Modeling Earth Systems and Environment, 6(3), 1407–1418. https://doi.org/10.1007/s40808-020-00757-2
  • Aneseyee, A. B., Elias, E., Soromessa, T., & Feyisa, G. L. (2020). Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. The Science of the Total Environment, 728, 138776. https://doi.org/10.1016/j.scitotenv.2020.138776
  • Ashiagbor, G., Forkuo, E. K., Laari, P., & Aabeyir, R. (2013). Modeling soil erosion using RUSLE and GIS tools. Int J Remote Sens Geosci, 2(4), 1–17.
  • Ayalew, D. A., Deumlich, D., Šarapatka, B., & Doktor, D. (2020). Quantifying the sensitivity of NDVI-based C factor estimation and potential soil erosion prediction using Spaceborne earth observation data. Remote Sensing, 12(7), 1136. https://doi.org/10.3390/rs12071136
  • Ayalew, G., & Selassie, Y. G. (2015). Soil loss estimation for soil conservation planning using geographic information system in Guang watershed, Blue Nile basin. J Environ Earth Sci, 5(1), 126–134.
  • Balabathina, V. N., Raju, R. P., Mulualem, W., & Tadele, G. (2020). Estimation of soil loss using remote sensing and GIS-based universal soil loss equation in northern catchment of Lake Tana Sub-basin, Upper Blue Nile Basin, Northwest Ethiopia. Environmental Systems Research, 9(1), 1–32. https://doi.org/10.1186/s40068-020-00203-3
  • Balcha, S. K., Awass, A. A., Hulluka, T. A., Ayele, G. T., & Bantider, A. (2022). Hydrological Simulation in a Rift-Bounded Lake System and Implication of Water Abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water, 14(23), 3929. https://doi.org/10.3390/w14233929
  • Bastola, S., Seong, Y. J., Lee, S. H., Shin, Y., & Jung, Y. (2019). Assessment of soil erosion loss by using RUSLE and GIS in the Bagmati basin of Nepal. Journal of the Korean GEO-Environmental Society, 20(3), 5–14.
  • Bekele, D. A., Gella, G. W., & Ejigu, M. A. (2022). Erosion risk assessment: A contribution for conservation priority area identification in the sub-basin of Lake Tana, north-western Ethiopia. International Soil and Water Conservation Research, 10(1), 46–61. https://doi.org/10.1016/j.iswcr.2021.04.010
  • Bekele, M. (2021). Geographic information system (GIS) based soil loss estimation using RUSLE model for soil and water conservation planning in anka_shashara watershed, southern Ethiopia. International Journal of Hydrology, 5(1), 9–27. https://doi.org/10.15406/ijh.2021.05.00260
  • Belayneh, M., Yirgu, T., & Tsegaye, D. (2019). Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques. Environmental Systems Research, 8(1), 20. https://doi.org/10.1186/s40068-019-0149-x
  • Berendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. (2015). Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18(5), 881–888. https://doi.org/10.1007/s10021-015-9869-6
  • Boateng, E., Breuning-Madsen, H., Jones, R. J., King, D., Nachtergaele, F., & Montanarella, L. (2008). A proposal for the compliation of a soil profile analytical database for West Africa. West African Journal of Applied Ecology, 1(1) https://doi.org/10.4314/wajae.v1i1.40568
  • Bombino, G., Porto, P., Tamburino, V., & Zimbone, S. M. (2004). Crop and management factor estimate for applying RUSLE in rangeland areas [Paper presentation]. 2004 ASAE Annual Meeting (p. 1), American Society of Agricultural and Biological Engineers.
  • Botanie, D. T. (2022). Interbasin transfer of water as an option to mitigate the impact of climate variability on stream flow of Meki river watershed.
  • Cassol, E. A., Silva, T. S. D., Eltz, F. L. F., & Levien, R. (2018). Soil erodibility under natural rainfall conditions as the K factor of the universal soil loss equation and application of the nomograph for a subtropical Ultisol. Revista Brasileira de Ciência Do Solo, 42(0), e0170262. https://doi.org/10.1590/18069657rbcs20170262
  • Chakrabortty, R., & Pal, S. C. (2023). Modeling soil erosion susceptibility using GIS-based different machine learning algorithms in monsoon dominated diversified landscape in India. Modeling Earth Systems and Environment, 9(2), 2927–2942. https://doi.org/10.1007/s40808-022-01681-3
  • Chuenchum, P., Xu, M., & Tang, W. (2019). Estimation of soil erosion and sediment yield in the Lancang–Mekong River using the modified revised universal soil loss equation and GIS techniques. Water, 12(1), 135. https://doi.org/10.3390/w12010135
  • Colman, C. B., Garcia, K. M. P., Pereira, R. B., Shinma, E. A., Lima, F. E., Gomes, A. O., & Oliveira, P. T. S. (2018). Different approaches to estimate the sediment yield in a tropical watershed. RBRH, 23(0), 1–9. https://doi.org/10.1590/2318-0331.231820170178
  • Degife, A., Worku, H., & Gizaw, S. (2021). Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environmental Systems Research, 10(1), 24. https://doi.org/10.1186/s40068-021-00232-6
  • Demlie, M., Wohnlich, S., & Ayenew, T. (2008). Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, Central Ethiopia. Journal of Hydrology, 353(1–2), 175–188. https://doi.org/10.1016/j.jhydrol.2008.02.009
  • Dendir, Z., & Simane, B. (2019). Livelihood vulnerability to climate variability and change in different agroecological zones of Gurage Administrative Zone, Ethiopia. Progress in Disaster Science, 3, 100035. https://doi.org/10.1016/j.pdisas.2019.100035
  • Deressa, A., Yli-Halla, M., & Mohamed, M. (2020). Soil organic carbon stock and retention rate among land uses along Didessa toposequence in humid Western Ethiopia. Environmental Systems Research, 9(1), 1–12. https://doi.org/10.21203/rs.3.rs-75409/v1
  • Durigon, V., Carvalho, D., Antunes, M., Oliveira, P., & Fernandes, M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441–453. https://doi.org/10.1080/01431161.2013.871081
  • Dutta, D., Das, S., Kundu, A., & Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Systems and Environment, 1(4), 1–9. https://doi.org/10.1007/s40808-015-0034-1
  • Egbueri, J. C., Igwe, O., & Ifediegwu, S. I. (2022). Erosion risk mapping of Anambra State in southeastern Nigeria: Soil loss estimation by RUSLE model and geoinformatics. Bulletin of Engineering Geology and the Environment, 81(3), 91. https://doi.org/10.1007/s10064-022-02589-z
  • Erol, A., Koşkan, Ö., & Başaran, M. A. (2015). Socioeconomic modifications of the universal soil loss equation. Solid Earth. 6(3), 1025–1035. https://doi.org/10.5194/se-6-1025-2015
  • Fao, F. (2015). Agriculture Organization: Status of the World’s Soil Resources (SWSR)–Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
  • Ferro, V., & Porto, P. (2000). Sediment delivery distributed (SEDD) model. Journal of Hydrologic Engineering, 5(4), 411–422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
  • Fournier, F. (1962). Map of erosion danger in Africa south of the Sahara. Explanatory Note. EEC, Commission for Technical Cooperation in Africa.
  • Gessesse, B., Bewket, W., & Bräuning, A. (2015). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development, 26(7), 711–724. https://doi.org/10.1002/ldr.2276
  • Getu, L. A., Nagy, A., & Addis, H. K. (2022). Soil loss estimation and severity mapping using the RUSLE model and GIS in Megech watershed, Ethiopia. Environmental Challenges, 8, 100560. https://doi.org/10.1016/j.envc.2022.100560
  • Ghafari, H., Gorji, M., Arabkhedri, M., Roshani, G. A., Heidari, A., & Akhavan, S. (2017). Identification and prioritization of critical erosion areas based on onsite and offsite effects. CATENA, 156, 1–9. https://doi.org/10.1016/j.catena.2017.03.014
  • Girma, R., & Gebre, E. (2020). Spatial modeling of erosion hotspots using GIS-RUSLE interface in Omo-Gibe river basin, Southern Ethiopia: Implication for soil and water conservation planning. Environmental Systems Research, 9(1), 1–14. https://doi.org/10.1186/s40068-020-00180-7
  • Hagos, Y. (2020). Estimating landscape vulnerability to soil erosion by RUSLE model using GIS and remote sensing: A case of Zariema watershed.
  • Haile, G. W., & Fetene, M. (2012). Assessment of soil erosion hazard in Kilie catchment, East Shoa, Ethiopia. Land Degradation & Development, 23(3), 293–306. https://doi.org/10.1002/ldr.1082
  • Hurni, H. (1985). Erosion-productivity-conservation systems in Ethiopia. Proceedings of 4th international conference on soil conservation. Maracay, Venezuela, 3-9 Novem-ber, 654–674.
  • Hurni, K., Zeleke, G., Kassie, M., Tegegne, B., Kassawmar, T., Teferi, E., Moges, A., Tadesse, D., Ahmed, M., Degu, Y., Kebebew, Z., Hodel, E., Amdihun, A., Mekuriaw, A., Debele, B., Deichert, G., & Hurni, H. (2015). The economics of land degradation. Ethiopia case study: Soil degradation and sustainable land management in the rain fed agricultural areas of Ethiopia: An assessment of the economic implications. Rep. Econ. Land Degrad.
  • Jothimani, M., Getahun, E., & Abebe, A. (2022). Remote sensing, GIS, and RUSLE in soil loss estimation in the Kulfo river catchment, Rift valley, Southern Ethiopia. Journal of Degraded and Mining Lands Management, 9(2), 3307–3315. https://doi.org/10.15243/jdmlm.2022.092.3307
  • Kebede, S., & Fufa, F. (2023). Estimation of average annual soil loss rates and its prioritization at sub-watershed level using RUSLE: A case of Finca’aa, Oromiya, Western Ethiopia. Environmental Health Engineering and Management, 10(1), 41–50. https://doi.org/10.34172/EHEM.2023.05
  • Kiptoo, O., & Mirzabaev, A. (2014). Economics of land degradation in Eastern Africa.
  • Legesse, D., Vallet-Coulomb, C., & Gasse, F. (2004). Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (Main Ethiopian Rift Valley) to changes in climate and human activities. Hydrological Processes, 18(3), 487–504. https://doi.org/10.1002/hyp.1334
  • Moisa, M. B., Dejene, I. N., Merga, B. B., & Gemeda, D. O. (2022). Soil loss estimation and prioritization using geographic information systems and the RUSLE model: A case study of the Anger River sub-basin, Western Ethiopia. Journal of Water and Climate Change, 13(3), 1170–1184. https://doi.org/10.2166/wcc.2022.433
  • Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423–428.
  • Negese, A., Fekadu, E., & Getnet, H. (2021). Potential soil loss estimation and erosion-prone area prioritization using RUSLE, GIS, and remote sensing in Chereti Watershed, Northeastern Ethiopia. Air, Soil and Water Research, 14, 117862212098581. https://doi.org/10.1177/1178622120985814
  • Pal, S. C., & Chakrabortty, R. (2019a). Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment, 5(2), 369–393. https://doi.org/10.1007/s40808-018-0540-z
  • Pal, S. C., & Chakrabortty, R. (2019b). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64(2), 352–377. https://doi.org/10.1016/j.asr.2019.04.033
  • Pal, S. C., & Chakrabortty, R. (2022). Soil loss estimation using different empirical and semi-empirical models. In Climate change impact on soil erosion in sub-tropical environment: Application of empirical and semi-empirical models (pp. 67–87). Springer International Publishing.
  • Pal, S. C., Chakrabortty, R., Arabameri, A., Santosh, M., Saha, A., Chowdhuri, I., Roy, P., & Shit, M. (2022a). Chemical weathering and gully erosion causing land degradation in a complex river basin of Eastern India: An integrated field, analytical and artificial intelligence approach. Natural Hazards, 110(2), 847–879. https://doi.org/10.1007/s11069-021-04971-8
  • Pal, S. C., Chakrabortty, R., Roy, P., Chowdhuri, I., Das, B., Saha, A., & Shit, M. (2021). Changing climate and land use of 21st century influences soil erosion in India. Gondwana Research, 94, 164–185. https://doi.org/10.1016/j.gr.2021.02.021
  • Pal, S. C., Ruidas, D., Saha, A., Islam, A. R. M. T., & Chowdhuri, I. (2022b). Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. Journal of Cleaner Production, 346, 131205. https://doi.org/10.1016/j.jclepro.2022.131205
  • Peccerillo, A., Mandefro, B., Solomon, G., Bedru, H., & Tesfaye, K. (1998). The Precambrian rocks from Southern Ethiopia: Petrology, geochemistry and their interaction with the recent volcanism from the Ethiopian Rift Valley. Neues Jahrbuch für Mineralogie – Abhandlungen, 173(3), 237–262. https://doi.org/10.1127/njma/173/1998/237
  • Piniewski, M., Bieger, K., & Mehdi, B. (2019). Advancements in Soil and Water Assessment Tool (SWAT) for ecohydrological modelling and application. Ecohydrology & Hydrobiology, 19(2), 179–181. https://doi.org/10.1016/j.ecohyd.2019.05.001
  • Renard, K. G. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
  • Renard, K. G., Laflen, J. M., Foster, G. R., & McCool, D. K. (2017). The revised universal soil loss equation. Soil Erosion Research Methods, 105–126. https://doi.org/10.1201/9780203739358-5
  • Roy, P., Pal, S. C., Chakrabortty, R., Islam, A. R. M. T., Chowdhuri, I., & Saha, A. (2023). The role of indigenous plant species in controlling the erosion of top soil in sub-tropical environment: In-situ field observation and validation. Journal of Hydrology, 625, 129993. https://doi.org/10.1016/j.jhydrol.2023.129993
  • Smaling, E. M. A., & Oenema, O. (2020). Estimating nutrient balances in agro-ecosystems at different spatial scales. Methods for Assessment of Soil Degradation, 229–252. https://doi.org/10.1201/9781003068716-12
  • Soemitro, R. A. A., & Asmaranto, R. (2016). The effect of drying – wetting cycles to the Wischmeier soil erodibility factors. Japanese Geotechnical Society Special Publication, 2(15), 595–598. https://doi.org/10.3208/jgssp.INA-06
  • Strahler, A. H., & Strahler, A. (2013). Introducing physical geography. Wiley.
  • Tadesse, S., Milesi, J.-P., & Deschamps, Y. (2003). Geology and mineral potential of Ethiopia: A note on geology and mineral map of Ethiopia. Journal of African Earth Sciences, 36(4), 273–313. https://doi.org/10.1016/s0899-5362(03)00048-4
  • Tesfaye, A. (2015). GIS-based time series assessment of soil erosion risk using RUSLE model: A case study of Cheraqe Watershed, Bilate River Sub-Basin, AAU, Ethiopia.
  • Teshome, A., Halefom, A., Teshome, M., Ahmad, I., Taddele, Y., Dananto, M., Demisse, S., & Szucs, P. (2021). Soil erosion modelling using GIS and revised universal soil loss equation approach: A case study of Guna-Tana landscape, Northern Ethiopia. Modeling Earth Systems and Environment, 7(1), 125–134. https://doi.org/10.1007/s40808-020-00864-0
  • Tesema, T. A. (2015). GIS-based time series assessment of soil erosion risk using RUSLE Model: A case study of Cheraqe watershed, Bilate river sub-basin. Thesis submitted to College of Natural Science School of Graduate Studies Center for Environmental Science [doctoral dissertation]. Addis Ababa university [Google scholar].
  • Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environmental Systems Research, 9(1), 1–10. https://doi.org/10.1186/s40068-020-00177-2
  • Tsegaye, L., & Bharti, R. (2021). Soil erosion and sediment yield assessment using RUSLE and GIS-based approach in Anjeb watershed, Northwest Ethiopia. SN Applied Sciences, 3(5), 1–19. https://doi.org/10.1007/s42452-021-04564-x
  • Ugese, A. A., Ajiboye, J. O., Ibrahim, E. S., Gajere, E. N., Itse, A., & Shaba, H. A. (2022). Soil loss estimation using remote sensing and RUSLE model in Koromi-Federe catchment area of Jos-East LGA, plateau state, Nigeria. Geomatics, 2(4), 499–517. https://doi.org/10.3390/geomatics2040027
  • Williams, J. R., Arnold, J. G., Kiniry, J. R., Gassman, P. W., & Green, C. H. (2008). History of model development at Temple, Texas. Hydrological Sciences Journal, 53(5), 948–960. https://doi.org/10.1623/hysj.53.5.948
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.
  • Yesuph, A. Y., & Dagnew, A. B. (2019). Soil erosion mapping and severity analysis based on RUSLE model and local perception in the Beshillo Catchment of the Blue Nile Basin, Ethiopia. Environmental Systems Research, 8(1), 1–21. https://doi.org/10.1186/s40068-019-0145-1
  • Zanchin, M., Moura, M. M. D., Nunes, M. C. M., Beskow, S., Miguel, P., Lima, C. L. R. D., & Bressiani, D. D. A. (2021). Soil loss estimated by means of the RUSLE model in a subtropical climate watershed. Revista Brasileira de Ciência Do Solo, 45. https://doi.org/10.36783/18069657rbcs20210050