1,008
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Optimizing bitter gourd (Momordica charantia L.) performance: exploring the impact of varied seed priming durations and zinc oxide nanoparticle concentrations on germination, growth, phytochemical attributes, and agronomic outcomes

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Article: 2313052 | Received 10 Dec 2023, Accepted 29 Jan 2024, Published online: 14 Feb 2024

References

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop Science, 13(6), 1–14. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  • Adhikari, B., Dhital, P. R., Ranabhat, S., & Poudel, H. (2021). Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd Momordica charantia. PloS One, 16(8), e0255258. https://doi.org/10.1371/journal.pone.0255258
  • Aminifard, M. H., Aroiee, H., Azizi, M., Nemati, H., & Jaafar, H. Z. (2012). Effect of humic acid on antioxidant activities and fruit quality of hot pepper Capsicum annuum L. Journal of Herbs, Spices and Medicinal Plants, 18(4), 360–369. https://doi.org/10.1080/10496475.2012.713905
  • Atici, Ö., Ağar, G., & Battal, P. E. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biologia Plantarum, 49(2), 215–222. https://doi.org/10.1007/s10535-005-5222-9
  • Baig, K. K., Ara, N., Ali, S., Khan, B. P., Wahab, A., & Rabbani, U. (2020). Effect of seed priming on bitter gourd with different sources of phosphorus at various soaking durations. Pure and Applied Biology, 9(1), 80–90. https://doi.org/10.19045/bspab.2020.90010
  • Bhat, P., & Bhat, A. (2016). Silver nanoparticles for enhancement of accumulation of capsaicin in suspension culture of Capsicum sp. Journal of Experimental Sciences, 7, 1–6. https://doi.org/10.19071/jes.2016.v7.3001
  • Chapman, H. D., & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68. https://doi.org/10.1097/00010694-196201000-00015
  • Chen, K., & Arora, R. (2013). Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany, 94, 33–45. https://doi.org/10.1016/j.envexpbot.2012.03.005
  • Cui, Y., Deng, Y., Zheng, K., Hu, X., Zhu, M., Deng, X., & Xi, R. (2019). An efficient micropropagation protocol for an endangered ornamental tree species Magnolia sirindhorniae Noot. and Chalermglin and assessment of genetic uniformity through DNA markers. Scientific Reports, 9(1), 9634. https://doi.org/10.1038/s41598-019-46050-w
  • Dietz, K. J., Mittler, R., & Noctor, G. (2016). Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiology, 171(3), 1535–1539. https://doi.org/10.1104/pp.16.00938
  • Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 149, 1–5.
  • Eisvand, H. R., Kamaei, H., & Nazarian, F. (2018). Chlorophyll fluorescence, yield and yield components of bread wheat affected by phosphate bio-fertilizer, zinc and boron under late-season heat stress. Photosynthetica, 564, 1287–1296.
  • Faizan, M., Faraz, A., Yusuf, M., Khan, S. T., & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2), 678–686. https://doi.org/10.1007/s11099-017-0717-0
  • Fang, Y., Wang, L., Xin, Z., Zhao, L., An, X., & Hu, Q. (2008). Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of Agricultural and Food Chemistry, 56(6), 2079–2084. https://doi.org/10.1021/jf800150z
  • Farooq, M., Almamari, S. A. D., Rehman, A., Al-Busaidi, W. M., Wahid, A., & Al-Ghamdi, S. S. (2021). Morphological, physiological and biochemical aspects of zinc seed priming-induced drought tolerance in faba bean. Scientia Horticulturae, 281, 109894. https://doi.org/10.1016/j.scienta.2021.109894
  • Farooq, M., Basra, S. M., & Ahmad, N. (2007). Improving the performance of transplanted rice by seed priming. Plant Growth Regulation, 51(2), 129–137. https://doi.org/10.1007/s10725-006-9155-x
  • Farooq, M., Basra, S. M., Rehman, H. U., & Saleem, B. A. (2008). Seed priming enhances the performance of late sown wheat Triticum aestivum L. by improving chilling tolerance. Journal of Agronomy and Crop Science, 194(1), 55–60. 1941, https://doi.org/10.1111/j.1439-037X.2007.00287.x
  • Farooq, M., Basra, S. M., Wahid, A., & Ahmad, N. (2010). Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. Agricultural Sciences in China, 9(2), 191–198. https://doi.org/10.1016/S1671-2927(09)60083-3
  • Farooq, M., Usman, M., Nadeem, F., Ur Rehman, H., Wahid, A., Basra, S. M., & Siddique, K. H. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771. https://doi.org/10.1071/CP18604
  • García-Gómez, C., Obrador, A., González, D., Babín, M., Fernández, M. D., & Lojkowski, W. (2017). Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. The Science of the Total Environment, 589, 11–24. https://doi.org/10.1016/j.scitotenv.2017.02.153
  • Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396
  • Horax, R., Hettiarachchy, N., & Islam, S. (2006). Total phenolic contents and phenolic acid constituents in 4 varieties of bitter melons Momordica charantia and antioxidant activities of their extracts. Journal of Food Science, 70(4), C275–C280. https://doi.org/10.1111/j.1365-2621.2005.tb07173.x
  • Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, 852–860. https://doi.org/10.1016/j.chemosphere.2017.11.077
  • Jośko, I., Oleszczuk, P., & Futa, B. (2014). The effect of inorganic nanoparticles ZnO, Cr2O3, CuO and Ni and their bulk counterparts on enzyme activities in different soils. Geoderma, 232-234, 528–537. https://doi.org/10.1016/j.geoderma.2014.06.012
  • Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmaceutical and Pharmacological Sciences, 27, 377–392.
  • Kim, Y. K., Park, W. T., Uddin, M. R., Kim, Y. B., Bae, H., Kim, H. H., Park, K. W., & Park, S. U. (2014). Variation of charantin content in different bitter melon cultivars. Asian Journal of Chemistry, 26(1), 309–310. https://doi.org/10.14233/ajchem.2014.15338
  • Kosová, K., Vítámvás, P., Urban, M. O., Prášil, I. T., & Renaut, J. (2018). Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Frontiers in Plant Science, 9, 122. https://doi.org/10.3389/fpls.2018.00122
  • Mazhar, M. W., Ali, Q., Ishtiaq, M., Ghani, A., Maqbool, M., Hussain, T., & Mushtaq, W. (2021). Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and l-aspartate. SABRAO Journal of Breeding and Genetics, 532, 1–21.
  • Mazhar, WM., Ishtiaq, M., Hussain, I., Parveen, A., Hayat Bhatti, K., Azeem, M., Thind, S., Ajaib, M., Maqbool, M., Sardar, T., Muzammil, K., & Nasir, N. (2022). Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PloS One, 17(3), e0264967. https://doi.org/10.1371/journal.pone.0264967
  • Palada, M. C., Ebert, A. W., Yang, R. Y., Chang, L. C., Chang, J., & Wu, D. L. (2017). Progress in research and development of moringa at the World Vegetable Center. Acta Horticulturae, 1158(1158), 425–434. https://doi.org/10.17660/ActaHortic.2017.1158.49
  • Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 79, 1776–1782.
  • Pirzadah, T. B., Malik, B., Maqbool, T., & Rehman, R. U. (2019). Development of nano-bioformulations of nutrients for sustainable agriculture. In Nanobiotechnology in Bioformulations. pp. 381–394. Springer.
  • Raei, M., Angaji, S. A., Omidi, M., & Khodayari, M. (2014). Effect of abiotic elicitors on tissue culture
  • Rahmawati, M., Mahfud, C., Risuleo, G., & Jadid, N. (2022). Nanotechnology in plant metabolite improvement and in animal welfare. Applied Sciences, 12(2), 838. https://doi.org/10.3390/app12020838
  • Rajasree, G., & Pillai, G. R. (2012). Effect of nitrogen nutrition on fruit quality and shelf life of cucurbitaceous vegetable bitter gourd. Journal of Plant Nutrition, 35(8), 1139–1153. https://doi.org/10.1080/01904167.2012.676127
  • Rakshit, A., and Singh, H. B. Eds. (2018). Advances in Seed Priming. Springer.
  • Rashmi, R., & Trivedi, M. P. (2014). Effect of various growth hormone concentration and combination on callus induction, nature of callus and callogenic response of Nerium odorum. Applied Biochemistry and Biotechnology, 172(5), 2562–2570. https://doi.org/10.1007/s12010-013-0693-1
  • Reed, R. B., Ladner, D. A., Higgins, C. P., Westerhoff, P., & Ranville, J. F. (2012). Solubility of nano‐zinc oxide in environmentally and biologically important matrices. Environmental Toxicology and Chemistry, 31(1), 93–99. https://doi.org/10.1002/etc.708
  • Rehman, A., Farooq, M., Ahmad, R., & Basra, S. M. A. (2015). Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Science and Technology, 43(2), 262–268. https://doi.org/10.15258/sst.2015.43.2.15
  • Rehman, A., Farooq, M., Naveed, M., Nawaz, A., & Shahzad, B. (2018). Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. European Journal of Agronomy, 94, 98–107. https://doi.org/10.1016/j.eja.2018.01.017
  • Rehman, A., Farooq, M., Naveed, M., Ozturk, L., & Nawaz, A. (2018). Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop and Pasture Science, 69(7), 659–672. https://doi.org/10.1071/CP17441
  • Rehman, A., Farooq, M., Ullah, A., Nawaz, A., Ud Din, M. M., & Shahzad, B. (2022). Seed priming with zinc sulfate and zinc chloride affects physio-biochemical traits, grain yield and biofortification of bread wheat (Triticum aestivum). Crop & Pasture Science, 73(5), 449–460. https://doi.org/10.1071/CP21194
  • Rehman, A., Khan, I., & Farooq, M. (2023). Secondary metabolites mediated reproductive tolerance under heat stress in plants. Journal of Plant Growth Regulation, 1, 1–19.
  • Rizwan, M., Ali, S., Zia Ur Rehman, M., Adrees, M., Arshad, M., Qayyum, M. F., Ali, L., Hussain, A., Chatha, S. A. S., & Imran, M. (2019). Alleviation of cadmium accumulation in maize Zea mays L. by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution (Barking, Essex: 1987), 248, 358–367. https://doi.org/10.1016/j.envpol.2019.02.031
  • Sadeghian, S. Y., & Yavari, N. (2004). Effect of water‐deficit stress on germination and early seedling growth in sugar beet. Journal of Agronomy and Crop Science, 190(2), 138–144. https://doi.org/10.1111/j.1439-037X.2004.00087.x
  • Saini, R., Rai, P. K., Bara, B. M., Sahu, P., Anjer, T., & Kumar, R. (2017). Effect of different seed priming treatments and its duration on seedling characters of Bitter gourd Momordica charantia L. Journal of Pharmacognosy and Phytochemistry, 65, 848–850.
  • Sedghi, M., Hadi, M., & Toluie, S. G. (2013). Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Annales of West University of Timisoara. Series of Biology, 162, 73.
  • Sharafi, E., Fotokian, M. H., & Loo, H. (2013). Improvement of hypericin and hyperforin production using zinc and iron nano-oxides as elicitors in cell suspension culture of John’swort Hypericum perforatum L. Journal of Medicinal Plants and by-Products, 2(2),177–184.
  • Sher, A., Sarwar, T., Nawaz, A., Ijaz, M., Sattar, A., & Ahmad, S. (2019). Methods of seed priming. In Priming and Pretreatment of Seeds and Seedlings pp. 1–10. Springer.
  • Siddiqui, Z. A., Parveen, A., Ahmad, L., & Hashem, A. (2019). Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 249, 374–382. https://doi.org/10.1016/j.scienta.2019.01.054
  • Sulaiman, C. T., & Balachandran, I. (2012). Total phenolics and total flavonoids in selected Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 74(3), 258–260. https://doi.org/10.4103/0250-474X.106069
  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, Biology, and Medicine, 6(2), 257–262. https://doi.org/10.1016/j.nano.2009.07.002
  • Wang, X. P., Li, Q. Q., Pei, Z. M., & Wang, S. C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum, 62(4), 801–808. https://doi.org/10.1007/s10535-018-0813-4
  • Waqas, M., Korres, N. E., Khan, M. D., Nizami, A. S., Deeba, F., Ali, I., & Hussain, H. (2019). Advances in the concept and methods of seed priming. In Priming and Pretreatment of Seeds and Seedlings. pp. 11–41. Springer.
  • Wojnarowicz, J., Chudoba, T., Gierlotka, S., & Lojkowski, W. (2018). Effect of microwave radiation power on the size of aggregates of ZnO NPs prepared using microwave solvothermal synthesis. Nanomaterials, 8(5), 343. https://doi.org/10.3390/nano8050343
  • Wojnarowicz, J., Opalinska, A., Chudoba, T., Gierlotka, S., Mukhovskyi, R., Pietrzykowska, E., Sobczak, K., & Lojkowski, W. (2016). Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis. Journal of Nanomaterials, 2016, 1–15. https://doi.org/10.1155/2016/2789871
  • Wu, F., Fang, Q., Yan, S., Pan, L., Tang, X., & Ye, W. (2020). Effects of zinc oxide nanoparticles on arsenic stress in rice Oryza sativa L.: germination, early growth, and arsenic uptake. Environmental Science and Pollution Research International, 27(21), 26974–26981. https://doi.org/10.1007/s11356-020-08965-0