864
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Drought tolerance screening of maize accessions at early growth stage in the mid-hills of Nepal

ORCID Icon, , , , , ORCID Icon & show all
Article: 2319157 | Received 18 Dec 2023, Accepted 10 Feb 2024, Published online: 01 Mar 2024

References

  • Abrokwah, O. A., Antwi-Boasiako, A., & Effah, Z. (2017). Effects of drought stress on maize genotypes (Zea mays L.) using some plant parameters. Journal of Science Research and Allied Sciences, 6(3), 1–17.
  • Addington, R. N., Donovan, L. A., Mitchell, R. J., Vose, J. M., Pecot, S. D., Jack, S. B., Hacke, U. G., Sperry, J. S., & Oren, R. (2006). Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant, Cell & Environment, 29(4), 535–545. https://doi.org/10.1111/j.1365-3040.2005.01430.x
  • Adebayo, M. A., & Menkir, A. (2015). Combining ability of adapted and exotic drought-tolerant maize inbred lines under full irrigation and rainfed conditions in Nigeria. Journal of Crop Improvement, 29(1), 117–130. https://doi.org/10.1080/15427528.2014.980484
  • Adhikari, B., Sa, K. J., & Lee, J. K. (2019). Drought tolerance screening of maize inbred lines at an early growth stage. Plant Breeding and Biotechnology, 7(4), 326–339. https://doi.org/10.9787/PBB.2019.7.4.326
  • Ahsan, M., Farooq, A., Khaliq, I., Ali, Q., Aslam, M., & Kashif, M. (2013). Inheritance of various yield-contributing traits in maize (Zea mays L.) at low moisture condition. African Journal of Agricultural Research, 8, 413–420. https://doi.org/10.5897/AJAR13.004
  • Ali, Q., Ahsan, M., Malook, S., Kanwal, N., Ali, F., Ali, A., Ahmed, W., Ishfaq, M., & Saleem, M. (2016). Screening for drought tolerance: Comparison of maize hybrids under water deficit condition. Advances in Life Sciences, 3, 51–58.
  • Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8, 69. https://doi.org/10.3389/fpls.2017.00069
  • Aslam, M., Maqbool, M. A., & Cengiz, R. (2015). Effects of drought on maize (pp. 5–17). Springer. https://doi.org/10.1007/978-3-319-25442-5_2
  • Avramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. S. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453–2466. https://doi.org/10.1093/jxb/erw055
  • Azadi, H., Keramati, P., Taheri, F., Rafiaani, P., Teklemariam, D., Gebrehiwot, K., Hosseininia, G., van Passel, S., Lebailly, P., & Witlox, F. (2018). Agricultural land conversion: Reviewing drought impacts and coping strategies. International Journal of Disaster Risk Reduction, 31, 184–195. https://doi.org/10.1016/j.ijdrr.2018.05.003
  • Badr, A., El-Shazly, H. H., Tarawneh, R. A., & Börner, A. (2020). Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants, 9(5), 565. https://doi.org/10.3390/plants9050565
  • Barbosa, P. A. M., Fritsche-Neto, R., Andrade, M. C., Petroli, C. D., Burgueño, J., Galli, G., Willcox, M. C., Sonder, K., Vidal-Martínez, V. A., Sifuentes-Ibarra, E., & Molnar, T. L. (2021). Introgression of maize diversity for drought tolerance: Subtropical maize landraces as a source of new positive variants. Frontiers in Plant Science, 12, 691211. https://doi.org/10.3389/fpls.2021.691211
  • Beebe, S. E., Rao, I. M., Cajiao, C., & Grajales, M. (2014). Selection for drought tolerance in common beans. Crop Science, 48(2), 582–592. https://doi.org/10.2135/cropsci2007.07.0404
  • Boyer, J. S. (1996). Advances in drought tolerance in plants. Advances in Agronomy, 56, 187–218.
  • Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., Carvalho, I., Faria, T., & Pinheiro, C. (2002). How plants cope with water stress in the field. Annals of Botany, 89(7), 907–916. https://doi.org/10.1093/aob/mcf105
  • Chimungu, J. G., Brown, K. M., & Lynch, J. P. (2014). Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiology, 166(4), 1943–1955. https://doi.org/10.1104/pp.114.249037
  • Comas, L. H., Becker, S. R., Cruz, V. M. v., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/fpls.2013.00442
  • Dar, I. A., Sofi, P. A., Dar, Z. A., Luddin, K., & Lone, A. A. (2018). Screening of maize genotypes for drought tolerance related trait variability. International Journal of Current Microbiology and Applied Sciences, 7(04), 668–682. https://doi.org/10.20546/ijcmas.2018.704.076
  • Du, L., Mikle, N., Zou, Z., Huang, Y., Shi, Z., Jiang, L., McCarthy, H. R., Liang, J., & Luo, Y. (2018). Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. The Science of the Total Environment, 628-629, 611–620. https://doi.org/10.1016/j.scitotenv.2018.02.114
  • Du Plessis, J. (2003). Maize production. Department of Agriculture, Directorate Agricultural Information Services.
  • Food and Agricultural Organization of the United Nations. (2015). Food and Agricultural Organization of the United Nations (FAO), FAO statistical database. http://faostat3.fao.org
  • Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. (2012). Drought stress in plants: an overview. In: Plant responses to drought stress. From morphological to molecular features; Aroca R., Springer, Berlin, Heidelberg, 1–33. https://doi.org/10.1007/978-3-642-32653-0_1
  • Gheysari, M., Sadeghi, S.-H., Loescher, H. W., Amiri, S., Zareian, M. J., Majidi, M. M., Asgarinia, P., & Payero, J. O. (2017). Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agricultural Water Management, 182(C), 126–138. https://doi.org/10.1016/j.agwat.2016.12.014
  • Gindaba, J., Rozanov, A., & Negash, L. (2004). Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. Forest Ecology and Management, 201(1), 119–129. https://doi.org/10.1016/j.foreco.2004.07.009
  • Gowda, V. R. P., Henry, A., Yamauchi, A., Shashidhar, H. E., & Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, 122(1), 1–13. https://doi.org/10.1016/j.fcr.2011.03.001
  • Grzesiak, S., Hura, T., Grzesiak, M. T., & Pieńkowski, S. (1999). The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum, 21(3), 305–315. https://doi.org/10.1007/s11738-999-0046-4
  • Habiyaremye, C., Barth, V., Highet, K., Coffey, T., & Murphy, K. M. (2017). Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustainability, 9(3), 389. https://doi.org/10.3390/su9030389
  • Hall, J. W., & Leng, G. (2019). Can we calculate drought risk and do we need to?. Wiley Interdisciplinary Reviews: Water, 6, e1349.
  • Hamal, K., Sharma, S., Khadka, N., Haile, G. G., Joshi, B. B., Xu, T., & Dawadi, B. (2020). Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorological Applications, 27(5), e1950. https://doi.org/10.1002/met.1950
  • Ibrahim, H. A., & Abdellatif, Y. M. R. (2016). Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Annals of Agricultural Sciences, 61(2), 267–274. https://doi.org/10.1016/j.aoas.2016.05.002
  • ICAR-IIMR. (2021). World maize scenario. Indian Council of Agricultural Research.
  • Intergovernmental Panel on Climate Change. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G. -K. Plattner, M. Tignor, S. K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 3–29). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004
  • Jha, Y. (2019). Regulation of water status, chlorophyll content, sugar, and photosynthesis in maize under salinity by mineral mobilizing bacteria. Photosynthesis: Production and Environmental Stress. https://doi.org/10.1002/9781119501800.ch5
  • Kandel, B. P. (2021). Status, prospect, and problems of hybrid maize (Zea mays L.) in Nepal: A brief review. Genetic Resources and Crop Evolution, 68(1), 1–10. https://doi.org/10.1007/s10722-020-01032-0
  • Kaushik, S. K., Tomar, D. S., & Dixit, A. K. (2011). Genetics of fruit yield and its contributing characters in tomato (Solanum lycopersicum). Journal of Agricultural Biotechnology and Sustainable Development, 3(10), 209.
  • Kavar, T., Maras, M., Kidrič, M., Šuštar-Vozlič, J., & Meglič, V. (2007). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular Breeding, 21(2), 159–172. https://doi.org/10.1007/s11032-007-9116-8
  • Khan, N. H., Ahsan, M., Naveed, M., Sadaqat, H. A., & Javed, I. (2016). Genetics of drought tolerance at seedling and maturity stages in Zea mays L. Spanish Journal of Agricultural Research, 14(3), e0705. https://doi.org/10.5424/sjar/2016143-8505
  • Khan, N. H., Ahsan, M., Saleem, M., & Ali, A. (2014). Genetic association among various morpho-physiological traits of Zea mays under drought condition. Life Science Journal, 11, 112–122.
  • Khayatnezhad, M., & Gholamin, R. (2012). The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). African Journal of Microbiology Research, 6, 2844–2848. https://doi.org/10.5897/AJMR11.964
  • Liu, M., Li, M., Liu, K., & Sui, N. (2015). Effects of drought stress on seed germination and seedling growth of different maize varieties. Journal of Agricultural Science, 7(5), 231–240. https://doi.org/10.5539/jas.v7n5p231
  • Lobell, D., Bänziger, M., Magorokosho, C., & Bindiganavile, V. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1(1), 42–45. https://doi.org/10.1038/nclimate1043
  • Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy, 43, 107–153.
  • Lynch, J. P., Ho, M. D., & Phosphorus, L. (2005). Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269(1-2), 45–56. https://doi.org/10.1007/s11104-004-1096-4
  • Magar, M. M., Parajuli, A., Sah, B. P., Shrestha, J., Sakh, B. M., Koirala, K. B., & Dhital, S. P. (2019). Effect of PEG induced drought stress on germination and seedling traits of maize (Zea mays L.) lines. Türk Tarım ve Doğa Bilimleri Dergisi, 6(2), 196–205. https://doi.org/10.30910/turkjans.556607
  • Maheswari, M., Tekula, V. L., Yellisetty, V., Sarkar, B., Yadav, S. K., Singh, J., G, S. B., Kumar, A., Amirineni, S., Narayana, J., & Maddi, V. (2016). Functional mechanisms of drought tolerance in maize through phenotyping and genotyping under well-watered and water-stressed conditions. European Journal of Agronomy, 79, 43–57. https://doi.org/10.1016/j.eja.2016.05.008
  • Makbul, S., Saruhan Güler, N., Durmuş, N., & Güven, S. (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 35(4), 369–377. https://doi.org/10.3906/bot-1002-7
  • Mencuccini, M. (2003). The ecological significance of long‐distance water transport: Short‐term regulation, long‐term acclimation and the hydraulic costs of stature across plant life forms. Plant, Cell & Environment, 26(1), 163–182. https://doi.org/10.1046/j.1365-3040.2003.00991.x
  • Messina, C., McDonald, D., Poffenbarger, H., Clark, R., Salinas, A., Fang, Y., Gho, C., Tang, T., Graham, G., Hammer, G. L., & Cooper, M. (2021). Reproductive resilience but not root architecture underpins yield improvement under drought in maize. Journal of Experimental Botany, 72(14), 5235–5245. https://doi.org/10.1093/jxb/erab231
  • MOALD. (2020/21). Statistical information on nepalese agriculture 2077-78 [Online] https://moald.gov.np/wp-content/uploads/2022/07/STATISTICAL- INFORMATION-ON-NEPALESE-AGRICULTURE-2077-78.pdf
  • Mustamu, N. E., Tampubolon, K., Alridiwirsah Basyuni, M., Al-Taey, D. K A, Jawad Kadhim Al Janabi, H., & Mehdizadeh, M. (2023). Drought stress induced by polyethylene glycol (PEG) in local maize at the early seedling stage. Heliyon, 9(9), e20209. https://doi.org/10.1016/j.heliyon.2023.e20209
  • Naveed, A., Khan, A. A., & Rauf, S. (2012). The potential of breeding okra (Abelmoschus esculentus L.) for water stress tolerance. In M. Ashraf, M. Öztürk, M. Ahmad, & A. Aksoy (Eds.), Crop production for agricultural improvement. Springer. https://doi.org/10.1007/978-94-007-4116-4_8
  • Nejad, S. K., Bakhshande, A., Nasab, S. B., & Payande, K. (2010). Effect of drought stress on corn root growth. Reports in Opinion, 2(2), 1–7.
  • Nonami, H. (1998). Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research, 111(3), 373–382. https://doi.org/10.1007/BF02507801
  • Novák, V., & Lipiec, J. (2012). Water extraction by roots under environmental stresses. In George J. Halasi-Kun (Ed.), Pollution and water resources, Columbia University seminar proceedings: Impact of anthropogenic activity and climate changes on the environment of Central Europe and USA (Vol XLI).
  • Pokhrel, S., Paudel, S., Shrestha, N., Kandel, B. P., Aryal, K., & Pokhrel, K. R. (2019). Screening at an early seedling stage for the identification of drought-tolerant genotypes in maize. Journal of Genetics, Genomics & Plant Breeding, 3(3), 45–52.
  • Qayyum, A., Ahmad, S., Liaqat, S., Malik, W., Noor, E., Saeed, H. M., & Memoona Hanif, M. (2012). Screening for drought tolerance in maize (Zea mays L.) hybrids at an early seedling stage. African Journal of Agricultural Research, 7(24), 3594–3604.
  • Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 5989. https://doi.org/10.1038/ncomms6989
  • Rosawanti, P., Ghulamahdi, M., Khumaida, N., Agroteknologi, J., Pertanian, F., Muhammadiyah, U., Rta, J., Km, M., & Tengah, K. (2015). Respon_Anatomi_dan_Fisiologi_Akar_Kedelai_terhadap. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 43(3), 186–192. https://doi.org/10.24831/jai.v43i3.11243
  • Sarker, A., Erskine, W., & Singh, M. (2005). Variation in root and shoot traits and their relationship in drought tolerance in lentil. Genetic Resources and Crop Evolution, 52(1), 89–97. https://doi.org/10.1007/s10722-005-0289-x
  • Sarker, U., & Oba, S. (2018). Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. BMC Plant Biology, 18(1), 258. https://doi.org/10.1186/s12870-018-1484-1
  • Shahzad, A., Gul, H., Ahsan, M., Wang, D., & Fahad, S. (2023). Comparative genetic evaluation of maize inbred lines at seedling and maturity stages under drought stress. Journal of Plant Growth Regulation, 42(2), 989–1005. https://doi.org/10.1007/s00344-022-10608-2
  • Slattery, R. A., Vanloocke, A., Bernacchi, C. J., Zhu, X. G., & Ort, D. R. (2017). Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Frontiers in Plant Science, 8(April), 549. https://doi.org/10.3389/fpls.2017.00549
  • Tandzi, L. N., Ngonkeu, E. M., Youmbi, E., Nartey, E., Yeboah, M., Gracen, V., Ngeve, J., & Mafouasson, H. A. (2015). Agronomic performance of maize hybrids under acid and control soil conditions. International Journal of Agronomy and Agricultural Research (IJAAR), 6(4), 275–291.
  • Tani, E., Chronopoulou, E. G., Labrou, N. E., Sarri, E., Goufa, M., Vaharidi, X., Tornesaki, A., Psychogiou, M., Bebeli, P. J., & Abraham, E. M. (2019). Growth, physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L. and their hybrid (Alborea). Agronomy, 9(1), 38. https://doi.org/10.3390/agronomy9010038
  • Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11). bio035279. https://doi.org/10.1242/bio.035279
  • Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K.-C., Lizaso, J. I., Lorite, I. J., … Wallach, D. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9(1), 4249. https://doi.org/10.1038/s41467-018-06525-2
  • Widuri, L. I., Lakitan, B., Sodikin, E., Hasmeda, M., Meihana, M., Kartika, K., & Siaga, E. (2018). Shoot and root growth in common bean (Phaseolus vulgaris L.) exposed to gradual drought stress. AGRIVITA Journal of Agricultural Science, 40(3), 442–452. https://doi.org/10.17503/agrivita.v40i0.1716
  • Windra Sukma, K. P. (2018). Growth and Production of Local, Hybrid and Composite Corn in Pamekasan Madura. Journal of Agrosains: Creative and Innovative Work, 4(2), 34. https://doi.org/10.31102/agrosains.2017.4.2.34-38
  • Wu, Y., & Cosgrove, D. J. (2000). Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Journal of Experimental Botany, 51(350), 1543–1553. https://doi.org/10.1093/jexbot/51.350.1543
  • Yadav, S., & Sharma, K. D. (2016). Molecular and morphophysiological analysis of drought stress in plants. In E. C. Rigobelo (Ed.), Plant growth (pp. 149–173). InTechOpen. https://doi.org/10.5772/65246
  • Yin, Y., Gao, Y., Lin, D., Wang, L., Ma, W., & Wang, J. (2021). Mapping the global-scale maize drought risk under climate change based on the GEPIC-vulnerability-risk model. International Journal of Disaster Risk Science, 12(3), 428–442. https://doi.org/10.1007/s13753-021-00349-3
  • Zhang, Q., Liu, H., Wu, X., & Wang, W. (2020). Identification of drought-tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biology, 20(1), 315. https://doi.org/10.1186/s12870-020-02526-w
  • Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 68. https://doi.org/10.1186/s12870-018-1281-x
  • Zhu, J., Brown, K. M., & Lynch, J. P. (2010). Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, Cell & Environment, 33(5), 740–749. https://doi.org/10.1111/j.1365-3040.2009.02099.x