492
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Greenhouse gas emissions from riparian systems as affected by hydrological extremes: a mini-review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2321658 | Received 05 Oct 2023, Accepted 16 Feb 2024, Published online: 28 Feb 2024

References

  • Altor, A. E., & Mitsch, W. J. (2006). Methane flux from created riparian marshes: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 1–13. https://doi.org/10.1016/j.ecoleng.2006.06.006
  • Amadi, C. C., Van Rees, K. C., & Farrell, R. E. (2016). Soil–­atmosphere exchange of carbon dioxide, methane and nitrous oxide in shelterbelts compared with adjacent cropped fields. Agriculture, Ecosystems & Environment, 223, 123–134. https://doi.org/10.1016/j.agee.2016.02.026
  • Angel, R., Claus, P., & Conrad, R. (2012). Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. The ISME Journal, 6(4), 847–862. https://doi.org/10.1038/ismej.2011.141
  • Ansari, J., Bardhan, S., Eivazi, F., Anderson, S. H., & Mendis, S. S. (2023a). Bacterial community diversity for three selected land use systems as affected by soil moisture regime. Applied Soil Ecology, 192, 105100. https://doi.org/10.1016/j.apsoil.2023.105100
  • Ansari, J., Davis, M. P., Anderson, S. H., Eivazi, F., & Bardhan, S. (2023b). Greenhouse gas emissions from row crop, agroforestry, and forested land use systems in floodplain soils. Water, Air, & Soil Pollution, 234(4), 227. https://doi.org/10.1007/s11270-023-06227-6
  • Aronson, E. L., Goulden, M. L., & Allison, S. D. (2019). Greenhouse gas fluxes under drought and nitrogen addition in a Southern California grassland. Soil Biology and Biochemistry, 131, 19–27. https://doi.org/10.1016/j.soilbio.2018.12.010
  • Audet, J., Elsgaard, L., Kjaergaard, C., Larsen, S. E., & Hoffmann, C. C. (2013). Greenhouse gas emissions from a Danish riparian wetland before and after restoration. Ecological Engineering, 57, 170–182. https://doi.org/10.1016/j.ecoleng.2013.04.021
  • Bailey, N. J., Motavalli, P. P., Udawatta, R. P., & Nelson, K. A. (2009). Soil CO2 emissions in agricultural watersheds with agroforestry and grass contour buffer strips. Agroforestry Systems, 77(2), 143–158. https://doi.org/10.1007/s10457-009-9218-x
  • Baskerville, M., Bazrgar, A., Reddy, N., Ofosu, E., Thevathasan, N., Gordon, A. M., & Oelbermann, M. (2021). Greenhouse gas emissions from riparian zones are related to vegetation type and environmental factors. Journal of Environmental Quality, 50(4), 847–857. https://doi.org/10.1002/jeq2.20250
  • Batson, J., Noe, G. B., Hupp, C. R., Krauss, K. W., Rybicki, N. B., & Schenk, E. R. (2015). Soil greenhouse gas emissions and carbon budgeting in a short‐hydroperiod floodplain wetland. Journal of Geophysical Research: Biogeosciences, 120(1), 77–95. https://doi.org/10.1002/2014JG002817
  • Brooks, P. D., Schmidt, S. K., & Williams, M. W. (1997). Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes. Oecologia, 110(3), 403–413. https://doi.org/10.1007/PL00008814
  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122
  • Castaldi, S. (2000). Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biology and Fertility of Soils, 32(1), 67–72. https://doi.org/10.1007/s003740000218
  • Cholet, C., Houle, D., Sylvain, J. D., Doyon, F., & Maheu, A. (2022). Climate change increases the severity and duration of soil water stress in the temperate forest of eastern North America. Frontiers in Forests and Global Change, 94.
  • Collins, H. P., Fay, P. A., Kimura, E., Fransen, S., & Himes, A. (2017). Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil. Soil Science Society of America Journal, 81(4), 781–795. https://doi.org/10.2136/sssaj2017.09.0294
  • Dalal, R. C., Wang, W., Robertson, G. P., & Parton, W. J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Research, 41(2), 165–195. https://doi.org/10.1071/SR02064
  • Datta, A., Santra, S. C., & Adhya, T. K. (2011). Relationship between CH4 and N2O flux from soil and their ambient mixing ratio in a riparian rice-based agroecosystem of tropical region. Journal of Environmental Monitoring: JEM, 13(12), 3469–3474. https://doi.org/10.1039/c1em10478k
  • Davis, M. P. (2018). Greenhouse gas emissions from saturated riparian buffers and woodchip bioreactors [Doctoral dissertation]. Iowa State University.
  • Dutaur, L., & Verchot, L. V. (2007). A global inventory of the soil CH4 sink. Global Biogeochemical Cycles, 21(4). https://doi.org/10.1029/2006GB002734
  • Gacengo, C. N., Wood, C. W., Shaw, J. N., Raper, R. L., & Balkcom, K. S. (2009). Agroecosystem management effects on greenhouse gas emissions across a coastal plain catena. Soil Science, 174(4), 229–237. https://doi.org/10.1097/SS.0b013e31819f5fce
  • Galic, M., Bilandzija, D., Percin, A., Sestak, I., Mesic, M., Blazinkov, M., & Zgorelec, Z. (2019). Effects of agricultural practices on carbon emission and soil health. Journal of Sustainable Development of Energy, Water and Environment Systems, 7(3), 539–552. https://doi.org/10.13044/j.sdewes.d7.0271
  • Gao, B., Ju, X., Su, F., Meng, Q., Oenema, O., Christie, P., Chen, X., & Zhang, F. (2014). Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. The Science of the Total Environment, 472, 112–124. https://doi.org/10.1016/j.scitotenv.2013.11.003
  • Gebremichael, A. W., Osborne, B., & Orr, P. (2017). Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem. Biogeosciences, 14(10), 2611–2626. https://doi.org/10.5194/bg-14-2611-2017
  • Goodroad, L. L., & Keeney, D. R. (1984). Nitrous oxide emission from forest, marsh, and prairie ecosystems. Journal of Environmental Quality, 13(3), 448–452. https://doi.org/10.2134/jeq1984.00472425001300030024x
  • Groffman, P. M., Hardy, J. P., Driscoll, C. T., & Fahey, T. J. (2006). Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 12(9), 1748–1760. https://doi.org/10.1111/j.1365-2486.2006.01194.x
  • Gundersen, P., Christiansen, J. R., Alberti, G., Brüggemann, N., Castaldi, S., Gasche, R., Kitzler, B., Klemedtsson, L., Lobo-do-Vale, R., Moldan, F., Rütting, T., Schleppi, P., Weslien, P., & Zechmeister-Boltenstern, S. (2012). The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeosciences, 9(10), 3999–4012. https://doi.org/10.5194/bg-9-3999-2012
  • Hansen, M., Clough, T. J., & Elberling, B. (2014). Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biology and Biochemistry, 69, 17–24. https://doi.org/10.1016/j.soilbio.2013.10.031
  • Hassler, E., Corre, M. D., Tjoa, A., Damris, M., Utami, S. R., & Veldkamp, E. (2015). Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences, 12(19), 5831–5852. https://doi.org/10.5194/bg-12-5831-2015
  • Heil, J., Vereecken, H., & Brüggemann, N. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science, 67(1), 23–39. https://doi.org/10.1111/ejss.12306
  • Hernandez, M. E., & Mitsch, W. J. (2006). Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands, 26(3), 862–877. https://doi.org/10.1672/0277-5212(2006)26[862:IOHPFF]2.0.CO;2
  • Hinshaw, S. E., & Dahlgren, R. A. (2016). Nitrous oxide fluxes and dissolved N gases (N2 and N2O) within riparian zones along the agriculturally impacted San Joaquin River. Nutrient Cycling in Agroecosystems, 105(2), 85–102. https://doi.org/10.1007/s10705-016-9777-y
  • Hu, H. W., Chen, D., & He, J. Z. (2015). Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39(5), 729–749. https://doi.org/10.1093/femsre/fuv021
  • Ipcc, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., & Huang, M. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy , J. B. R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (Eds.) Cambridge University Press.
  • Iqbal, J., Parkin, T. B., Helmers, M. J., Zhou, X., & Castellano, M. J. (2015). Denitrification and nitrous oxide emissions in annual croplands, perennial grass buffers, and restored perennial grasslands. Soil Science Society of America Journal, 79(1), 239–250. https://doi.org/10.2136/sssaj2014.05.0221
  • Jacinthe, P. A., & Vidon, P. (2017). Hydro-geomorphic controls of greenhouse gas fluxes in riparian buffers of the White River watershed, IN (USA). Geoderma, 301, 30–41. https://doi.org/10.1016/j.geoderma.2017.04.007
  • Jacinthe, P. A., Bills, J. S., Tedesco, L. P., & Barr, R. C. (2012). Nitrous oxide emission from riparian buffers in relation to vegetation and flood frequency. Journal of Environmental Quality, 41(1), 95–105. https://doi.org/10.2134/jeq2011.0308
  • Jacinthe, P. A., Vidon, P., Fisher, K., Liu, X., & Baker, M. E. (2015). Soil methane and carbon dioxide fluxes from cropland and riparian buffers in different hydrogeomorphic settings. Journal of Environmental Quality, 44(4), 1080–1090. https://doi.org/10.2134/jeq2015.01.0014
  • Jiang, T., Schuchardt, F., Li, G., Guo, R., & Zhao, Y. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences (China), 23(10), 1754–1760. https://doi.org/10.1016/s1001-0742(10)60591-8
  • Kachenchart, B., Jones, D. L., Gajaseni, N., Edwards-Jones, G., & Limsakul, A. (2012). Seasonal nitrous oxide emissions from different land uses and their controlling factors in a tropical riparian ecosystem. Agriculture, Ecosystems & Environment, 158, 15–30. https://doi.org/10.1016/j.agee.2012.05.008
  • Kaiser, K. E., McGlynn, B. L., & Dore, J. E. (2018). Landscape analysis of soil methane flux across complex terrain. Biogeosciences, 15(10), 3143–3167. https://doi.org/10.5194/bg-15-3143-2018
  • Kandel, T. P., Karki, S., Elsgaard, L., & Lærke, P. E. (2019). Fertilizer-induced fluxes dominate annual N2O emissions from a nitrogen-rich temperate fen rewetted for paludiculture. Nutrient Cycling in Agroecosystems, 115(1), 57–67. https://doi.org/10.1007/s10705-019-10012-5
  • Keane, J. B., Toet, S., Ineson, P., Weslien, P., Stockdale, J. E., & Klemedtsson, L. (2021). Carbon dioxide and methane flux response and recovery from drought in a hemiboreal ombrotrophic fen. Frontiers in Earth Science, 8, 562401. https://doi.org/10.3389/feart.2020.562401
  • Koebsch, F., Gottschalk, P., Beyer, F., Wille, C., Jurasinski, G., & Sachs, T. (2020). The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1810), 20190685. https://doi.org/10.1098/rstb.2019.0685
  • Kollah, B., Patra, A. K., & Mohanty, S. R. (2018). Microbial cycling of greenhouse gases and their impact on climate change. In Advances in soil microbiology: recent trends and future prospects (pp. 129–143). Springer.
  • Krichels, A. H., Sipic, E., & Yang, W. H. (2019). Iron redox reactions can drive microtopographic variation in upland soil carbon dioxide and nitrous oxide emissions. Soil Systems, 3(3), 60. https://doi.org/10.3390/soilsystems3030060
  • Kwak, J.-H., Lim, S.-S., Baah-Acheamfour, M., Choi, W.-J., Fatemi, F., Carlyle, C. N., Bork, E. W., & Chang, S. X. (2019). Introducing trees to agricultural lands increases greenhouse gas emission during spring thaw in Canadian agroforestry systems. The Science of the Total Environment, 652, 800–809. https://doi.org/10.1016/j.scitotenv.2018.10.241
  • Lee, H. J., Kim, S. Y., Kim, P. J., Madsen, E. L., & Jeon, C. O. (2014). Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiology Ecology, 88(1), 195–212. https://doi.org/10.1111/1574-6941.12282
  • Liu, X., Lu, X., Yu, R., Sun, H., Xue, H., Qi, Z., Cao, Z., Zhang, Z., & Liu, T. (2021). Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China. Biogeosciences, 18(17), 4855–4872. https://doi.org/10.5194/bg-18-4855-2021
  • Lopes de Gerenyu, V. O., Anichkin, A. E., Avilov, V. K., Kuznetsov, A. N., & Kurganova, I. N. (2015). Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in southern Vietnam. Eurasian Soil Science, 48(2), 208–217. https://doi.org/10.1134/S1064229315020088
  • Lopes de Gerenyu, V. O., Kurbatova, Y. A., Kurganova, I. N., Tiunov, A. V., Anichkin, A. Y., Myakshina, T. N., & Kuznetsov, A. N. (2011). Daily and seasonal dynamics of CO2 fluxes from soils under different stands of monsoon tropical forest. Eurasian Soil Science, 44(9), 984–990. https://doi.org/10.1134/S1064229311090067
  • Mafa-Attoye, T. G., Baskerville, M. A., Ofosu, E., Oelbermann, M., Thevathasan, N. V., & Dunfield, K. E. (2020). Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem. The Science of the Total Environment, 724, 138148. https://doi.org/10.1016/j.scitotenv.2020.138148
  • Mander, Ü., Krasnova, A., Schindler, T., Megonigal, J. P., Escuer-Gatius, J., Espenberg, M., Machacova, K., Maddison, M., Pärn, J., Ranniku, R., Pihlatie, M., Kasak, K., Niinemets, Ü., & Soosaar, K. (2022). Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest. The Science of the Total Environment, 809, 151723. https://doi.org/10.1016/j.scitotenv.2021.151723
  • Mander, U., Maddison, M., Soosaar, K., Teemusk, A., Kanal, A., Uri, V., & Truu, J. (2015). The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands. Environmental Science and Pollution Research International, 22(4), 2360–2371. https://doi.org/10.1007/s11356-014-3427-1
  • McLain, J. E., & Martens, D. A. (2006). Moisture controls on trace gas fluxes in semiarid riparian soils. Soil Science Society of America Journal, 70(2), 367–377. https://doi.org/10.2136/sssaj2005.0105
  • Merino, A., Pérez-Batallón, P., & Macías, F. (2004). Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry, 36(6), 917–925. https://doi.org/10.1016/j.soilbio.2004.02.006
  • Moore, B. D., Kaur, G., Motavalli, P. P., Zurweller, B. A., & Svoma, B. M. (2017). Soil greenhouse gas emissions from agroforestry and other land uses under different moisture regimes in lower Missouri River Floodplain soils: A laboratory approach. Agroforestry Systems, 92(2), 335–348. https://doi.org/10.1007/s10457-017-0083-8
  • Mørkved, P. T., Dörsch, P., Henriksen, T. M., & Bakken, L. R. (2006). N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology and Biochemistry, 38(12), 3411–3420. https://doi.org/10.1016/j.soilbio.2006.05.015
  • Mortsch, L., Hengeveld, H., Lister, M., Wenger, L., Lofgren, B., Quinn, F., & Slivitzky, M. (2000). Climate change impacts on the hydrology of the Great Lakes-St. Lawrence system. Canadian Water Resources Journal, 25(2), 153–179. https://doi.org/10.4296/cwrj2502153
  • Müller, T., Walter, B., Wirtz, A., & Burkovski, A. (2006). Ammonium toxicity in bacteria. Current Microbiology, 52(5), 400–406. https://doi.org/10.1007/s00284-005-0370-x
  • Nag, S. K., Liu, R., & Lal, R. (2017). Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Environmental Monitoring and Assessment, 189(11), 580. https://doi.org/10.1007/s10661-017-6276-9
  • NASA. (2021). What is the greenhouse effect? Retrieved from The National Aeronautics and Space Administration. https://climate.nasa.gov
  • Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., & Singh, B. K. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology, 15(9), 2395–2417. https://doi.org/10.1111/1462-2920.12149
  • O’Connell, C. S., Ruan, L., & Silver, W. L. (2018). Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature Communications, 9(1), 1348. https://doi.org/10.1038/s41467-018-03352-3
  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
  • Ou, Y., Rousseau, A. N., Wang, L., Yan, B., Gumiere, T., & Zhu, H. (2019). Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding. Geoderma, 337, 825–833. https://doi.org/10.1016/j.geoderma.2018.10.032
  • Palm, C. A., Alegre, J. C., Arevalo, L., Mutuo, P. K., Mosier, A. R., & Coe, R. (2002). Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Global Biogeochemical Cycles, 16(4), 21–21. https://doi.org/10.1029/2001GB001855
  • Patel, K. F., Fansler, S. J., Campbell, T. P., Bond-Lamberty, B., Smith, A. P., RoyChowdhury, T., McCue, L. A., Varga, T., & Bailey, V. L. (2021). Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Communications Earth & Environment, 2(1), 127. https://doi.org/10.1038/s43247-021-00198-4
  • Pathak, H., Aggarwal, P. K., & Singh, S. D. (2012). Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications (Vol. 302). Indian Agricultural Research Institute.
  • Peralta, A. L., Ludmer, S., Matthews, J. W., & Kent, A. D. (2014). Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands. Ecological Engineering, 73, 246–253. https://doi.org/10.1016/j.ecoleng.2014.09.047
  • Poblador, S., Lupon, A., Sabate, S., & Sabater, F. (2017). Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil. Biogeosciences, 14(18), 4195–4208. https://doi.org/10.5194/bg-14-4195-2017
  • Porfirio, L. L., Newth, D., Harman, I. N., Finnigan, J. J., & Cai, Y. (2017). Patterns of crop cover under future climates. Ambio, 46(3), 265–276. https://doi.org/10.1007/s13280-016-0818-1
  • Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., & Munch, J. C. (2006). Emission of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry, 38(2), 263–274. https://doi.org/10.1016/j.soilbio.2005.05.005
  • Säurich, A., Tiemeyer, B., Dettmann, U., & Don, A. (2019). How do sand addition, soil moisture and nutrient status influence greenhouse gas fluxes from drained organic soils? Soil Biology and Biochemistry, 135, 71–84. https://doi.org/10.1016/j.soilbio.2019.04.013
  • Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister‐Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science, 61(5), 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.x
  • Schindler, T., Mander, Ü., Machacova, K., Espenberg, M., Krasnov, D., Escuer-Gatius, J., Veber, G., Pärn, J., & Soosaar, K. (2020). Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum. Scientific Reports, 10(1), 3204. https://doi.org/10.1038/s41598-020-60058-7
  • Sha, C., Mitsch, W. J., Mander, Ü., Lu, J., Batson, J., Zhang, L., & He, W. (2011). Methane emissions from freshwater riverine wetlands. Ecological Engineering, 37(1), 16–24. https://doi.org/10.1016/j.ecoleng.2010.07.022
  • Shi, W., Du, M., Ye, C., & Zhang, Q. (2021). Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China. Water Research, 201, 117308. https://doi.org/10.1016/j.watres.2021.117308
  • Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 54(4), 779–791. https://doi.org/10.1046/j.1351-0754.2003.0567.x
  • Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J., & Welty, C. (2017). Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences (Online), 14(11), 2831–2849. https://doi.org/10.5194/bg-14-2831-2017
  • Soosaar, K., Mander, Ü., Maddison, M., Kanal, A., Kull, A., Lõhmus, K., Truu, J., & Augustin, J. (2011). Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests. Ecological Engineering, 37(1), 40–53. https://doi.org/10.1016/j.ecoleng.2010.07.025
  • Stohl, A., Williams, E., Wotawa, G., & Kromp-Kolb, H. (1996). A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmospheric Environment, 30(22), 3741–3755. https://doi.org/10.1016/1352-2310(96)00104-5
  • Takakai, F., Desyatkin, A. R., Lopez, C. L., Fedorov, A. N., Desyatkin, R. V., & Hatano, R. (2008). CH4 and N2O emissions from a forest‐alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. Journal of Geophysical Research: Biogeosciences, 113(G2), G000521. https://doi.org/10.1029/2007JG000521
  • Tenuta, E. G., & Beauchamp, M. (2003). Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Canadian Journal of Soil Science, 83(5), 521–532.
  • Thiel, B., Krzic, M., Gergel, S., Terpsma, C., Black, A., Jassal, R., & Smukler, S. M. (2017). Soil CO2, CH4 and N2O emissions from production fields with planted and remnant hedgerows in the Fraser River Delta of British Columbia. Agroforestry Systems, 91(6), 1139–1156. https://doi.org/10.1007/s10457-016-9990-3
  • Turner, D. A., Chen, D., Galbally, I. E., Leuning, R., Edis, R. B., Li, Y., Kelly, K., & Phillips, F. (2008). Spatial variability of nitrous oxide emissions from an Australian irrigated dairy pasture. Plant and Soil, 309(1-2), 77–88. https://doi.org/10.1007/s11104-008-9639-8
  • Ullah, S., & Zinati, G. M. (2006). Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff. Biogeochemistry, 81(3), 253–267. https://doi.org/10.1007/s10533-006-9040-8
  • Ussiri, D. A., Lal, R., & Jarecki, M. K. (2009). Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil and Tillage Research, 104(2), 247–255. https://doi.org/10.1016/j.still.2009.03.001
  • Venterea, R. T., Maharjan, B., & Dolan, M. S. (2011). Fertilizer source and tillage effects on yield‐scaled nitrous oxide emissions in a corn cropping system. Journal of Environmental Quality, 40(5), 1521–1531. https://doi.org/10.2134/jeq2011.0039
  • Vidon, P. G., Welsh, M. K., & Hassanzadeh, Y. T. (2019). Twenty years of riparian zone research (1997–2017): where to next? Journal of Environmental Quality, 48(2), 248–260. https://doi.org/10.2134/jeq2018.01.0009
  • Vidon, P., Marchese, S., & Rook, S. (2017). Impact of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology and biogeochemistry. Hydrological Processes, 31(2), 476–488. https://doi.org/10.1002/hyp.11045
  • Vidon, P., Marchese, S., Welsh, M., & McMillan, S. (2016). Impact of precipitation intensity and riparian geomorphic characteristics on greenhouse gas emissions at the soil-atmosphere interface in a water-limited riparian zone. Water, Air, & Soil Pollution, 227(1), 1–12. https://doi.org/10.1007/s11270-015-2717-7
  • Waldo, S., Russell, E. S., Kostyanovsky, K., Pressley, S. N., O’Keeffe, P. T., Huggins, D. R., Stöckle, C. O., Pan, W. L., & Lamb, B. K. (2019). N2O emissions from two agroecosystems: High spatial variability and long pulses observed using static chambers and the flux‐gradient technique. Journal of Geophysical Research. Biogeosciences, 124(7), 1887–1904. https://doi.org/10.1029/2019JG005032
  • Wan, X., Huang, Z., He, Z., Yu, Z., Wang, M., Davis, M. R., & Yang, Y. (2015). Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387(1-2), 103–116. https://doi.org/10.1007/s11104-014-2277-4
  • Wang, J., Bogena, H., Süß, T., Graf, A., Weuthen, A., & Brüggemann, N. (2021). Investigating the controls on greenhouse gas emission in the riparian zone of a small headwater catchment using an automated monitoring system. Vadose Zone Journal, 20(5), e20149. https://doi.org/10.1002/vzj2.20149
  • Wang, L., Han, Z., & Zhang, X. (2010). Effects of soil pH on CO2 emission from long-term fertilized black soils in Northeastern China. In Proceedings of Conference on Environmental Pollution and Public Health (CEPPH 2010).
  • Wang, Z. P., Delaune, R. D., Patrick, W. H., Jr, & Masscheleyn, P. H. (1993). Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal, 57(2), 382–385. https://doi.org/10.2136/sssaj1993.03615995005700020016x
  • Wilcock, R., Elliott, S., Hudson, N., Parkyn, S., & Quinn, J. (2008). Climate change mitigation for agriculture: water quality benefits and costs. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 58(11), 2093–2099. https://doi.org/10.2166/wst.2008.906
  • Xu, C., Wong, V. N., & Reef, R. E. (2021). Effect of inundation on greenhouse gas emissions from temperate coastal wetland soils with different vegetation types in southern Australia. The Science of the Total Environment, 763, 142949. https://doi.org/10.1016/j.scitotenv.2020.142949
  • Yanai, J., Sawamoto, T., Oe, T., Kusa, K., Yamakawa, K., Sakamoto, K., Naganawa, T., Inubushi, K., Hatano, R., & Kosaki, T. (2003). Spatial variability of nitrous oxide emissions and their soil‐related determining factors in an agricultural field. Journal of Environmental Quality, 32(6), 1965–1977. https://doi.org/10.2134/jeq2003.1965
  • Yang, Y., Berhe, A. A., Barnes, M. E., Moreland, K. C., Tian, Z., Kelly, A. E., Bales, R. C., O’Geen, A. T., Goulden, M. L., Hartsough, P., & Hart, S. C. (2022). Climate warming alters nutrient storage in seasonally dry Forests: insights from a 2,300 m elevation gradient. Global Biogeochemical Cycles, 36(11), e2022GB007429. https://doi.org/10.1029/2022GB007429
  • Zhang, D., Li, J., Wu, J., & Cheng, X. (2022). Soil CO2 and CH4 emissions and their carbon isotopic signatures linked to saturated and drained states of the Three Gorges Reservoir of China. Environmental Pollution (Barking, Essex: 1987), 293, 118599. https://doi.org/10.1016/j.envpol.2021.118599
  • Zhang, Z., & Furman, A. (2021). Soil redox dynamics under dynamic hydrologic regimes-A review. The Science of the Total Environment, 763, 143026. https://doi.org/10.1016/j.scitotenv.2020.143026
  • Zhong, Z., & Makeschin, F. (2006). Differences of soil microbial biomass and nitrogen transformation under two forest types in central Germany. Plant and Soil, 283(1-2), 287–297. https://doi.org/10.1007/s11104-006-0018-z