557
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Foliar application of amino acid biostimulants increased growth and antioxidant activity of Epipremnum aureum

, , , , &
Article: 2321680 | Received 31 Oct 2023, Accepted 17 Feb 2024, Published online: 01 Mar 2024

References

  • Ali, K., Seyed, A. M. M., Seyed, A. M. M. S., Ali, E., & Mojtaba, N. M. (2022). Effect of foliar application of amino acids on grain yield and physiological traits of chickpea under drought stress. Gesunde Pflanze, 75, 1705–1718. https://doi.org/10.1007/s10343-022-00821-0
  • Al-Janabi, Y. A., Abood, N. M., & Hamdan, M. I. (2021). The effect of amino acids and the date of planting on yield and some yield components of three maize varieties. IOP Conference Series, 904(1), 1. https://doi.org/10.1088/1755-1315/904/1/012066
  • Al-Karaki, G. N., & Othman, Y. (2023). Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South African Journal of Botany, 154, 225–10. https://doi.org/10.1016/j.sajb.2023.01.034
  • Bakpa, E. P., Xie, J. M., Zhang, J., Han, K. N., Ma, Y. F., & Liu, T. D. (2021). Influence of soil amendment of different concentrations of amino acid water-soluble fertilizer on physiological characteristics, yield and quality of "Hangjiao No.2" Chili Pepper. Peer J, 9, e12472. https://doi.org/10.7717/peerj.12472
  • Belda, R. M., Mendoza-HernáNdez, D., & Fornes, F. (2013). Nutrient-rich compost versus nutrient-poor vermicompost as growth media for ornamental-plant production. Journal of Plant Nutrition and Soil Science, 176(6), 827–835. https://doi.org/10.1002/jpln.201200325
  • Bouranis, D. L., Stylianidis, G. P., Manta, V., Karousis, E. N., Tzanaki, A., Dimitriadi, D., Bouzas, E. A., Siyiannis, V. F., Constantinou, K. V., Chorianopoulou, S. N., & Bloem, E. (2023). Floret biofortification of broccoli using amino acids coupled with selenium under different sSurfactants: A case study of cultivating functional foods. Plants, 12(6), 1272–1272. https://doi.org/10.3390/plants12061272
  • Buchanan, B. B., Gruissem, W., & Jones, R. L. (2000). Biochemistry and molecular biology of plants. American Society of Plant physiologists.
  • Colla, G., Cardarelli, M., Bonini, P., & Rouphael, Y. (2017). Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience, 52(9), 1214–1220. https://doi.org/10.21273/HORTSCI12200-17
  • Dierk, S., & John, E. C. (1985). Sulfonylurea herbicides: Growth inhibition in soybean cell suspension cultures and in bacteria correlated with block in biosynthesis of valine, leucine, or isoleucine. Pesticide Biochemistry and Physiology, 23(3), 398–412. https://doi.org/10.1016/0048-3575(85)90102-6
  • Galina, S., Vladislava, D., Jeny, M.-S., Nedelina, K., Radoslav, A., Maria, A., & Ekaterina, K. (2022). Sequencing and gene expression analysis of catalase genes in Antarctic fungal strain Penicillium griseofulvum P29. Polar Biology, 45, 437–447. https://doi.org/10.1007/s00300-021-03001-4
  • Gilmore, A. M., & Ball, M. C. (2000). Protection and storage of chlorophyll in overwintering evergreens. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11098–11101. https://doi.org/10.1073/pnas.150237697
  • Gregor, J., & Marsálek, B. (2004). Freshwater phytoplankton quantification by chlorophyll A: A comparative study of in vitro, in vivo and in situ methods. Water Research, 38(3), 517–522. https://doi.org/10.1016/j.watres.2003.10.033
  • Haghighi, M., Barzegar, S. A., & Abolghasemi, R. (2022). Effect of exogenous amino acids application on the biochemical, antioxidant, and nutritional value of some leafy cabbage cultivars. Scientific Reports, 12(1), 17720–17720. https://doi.org/10.1038/S41598-022-21273-6
  • Hajihashemi, S., & Omolbanin, J. (2023). Nitric Oxide Effect on Growth, Physiological and Biochemical Processes, Flowering, and Postharvest Performance of Narcissus tazzeta. Journal of Plant Growth Regulation, 42(2), 892–907. https://doi.org/10.1007/s00344-022-10596-3
  • Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy, 130, 141–174. https://doi.org/10.1016/bs.agron.2014.10.001
  • He, X., Song, Y., Wang, S. G., Liu, J. L., Bai, X., & Yin, B. (2020). Study on synergistic effect and mechanism of amino acid fermentation tail liquor on water-soluble fertilizer. Modern Agricultural Research, 7, 45–47. https://doi.org/10.19704/j.cnki.xdnyyj.2020.07.021
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  • Hebat-Allah, A. H., Mekki, B. B., Marwa, E. A. E.-S., & Ezzat, E. E. L. (2019). Effect of L-Ornithine application on improving drought tolerance in sugar beet plants. Heliyon, 5(10), e02631. https://doi.org/10.1016/j.heliyon.2019.e02631
  • Ji, P. F., Chen, X. H., & Yang, H. B. (2014). Effects of amino acid on physiological traits of buckwheat seedlings under salt stress. Hubei Agricultural Sciences, 16, 3749–3752. https://doi.org/10.14088/j.cnki.issn0439-8114.2014.16.079
  • Jiang, M. L., Zhan, Z. X., Li, H. Y., Dong, X. S., Cheng, F., & Piao, Z. Y. (2020). Brassica rapa orphan genes largely affect soluble sugar metabolism. Horticulture Research, 7(1), 181. https://doi.org/10.1038/s41438-020-00403-z
  • Kausar, A., Zahra, N., Tahir, H., Hafeez, M. B., Abbas, W., & Raza, A. (2023). Modulation of growth and biochemical responses in spinach (Spinacia oleracea L.) through foliar application of some amino acids under drought conditions. South African Journal of Botany, 158, 243–253. https://doi.org/10.1016/j.sajb.2023.05.018
  • Khan, A. S., Munir, M., Shaheen, T., Tassawar, T., Rafiq, M. A., Ali, S., Anwar, R., Rehman, R. N. U., Hasan, M. U., & Malik, A. U. (2022). Supplemental foliar applied mixture of amino acids and seaweed extract improved vegetative growth, yield and quality of citrus fruit. Scientia Horticulturae, 296, 110903. https://doi.org/10.1016/j.scienta.2022.110903
  • Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B., Wang, H., Liu, P., & Jiang, W. (2019). Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy, 9(5), 266. https://doi.org/10.3390/agronomy9050266
  • Khosravinejad, F., Heydari, R., & Farboodnia, T. (2008). Effects of salinity on photosynthetic pigments, respiration, and water content in two barley varieties. Pakistan Journal of Biological Sciences, 11(20), 2438–2442. https://doi.org/10.3923/pjbs.2008.2438.2442
  • Lei, S. H., Rossi, S., & Huang, B. R. (2022). Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants, 11(2), 199–199. https://doi.org/10.3390/PLANTS11020199
  • Liang, H. X., Zhao, S. Y., Liu, K. Y., & Su, Y. H. (2019). Roles of reactive oxygen species and antioxidant enzymes on formaldehyde removal from air by plants. Journal of Environmental Science and Health, 54(3), 193–201. https://doi.org/10.1080/10934529.2018.1544477
  • Li, M. F., Guo, S. J., Yang, X. H., Meng, Q. W., & Wei, X. J. (2016). Exogenous gamma-aminobutyric acid increases salt tolerance of wheat by improving photosynthesis and enhancing activities of antioxidant enzymes. Biologia Plantarum, 60(1), 123–131. https://doi.org/10.1007/s10535-015-0559-1
  • Li, S., Zhang, K., Tian, J., Chang, K., Yuan, S., Zhou, Y., Zhao, H., & Zhong, F. (2022). Fulvic acid mitigates cadmium toxicity-induced damage in cucumber seedlings through the coordinated interaction of antioxidant enzymes, organic acid, and amino acid. Environmental Science and Pollution Research International, 30(11), 28780–28790. https://doi.org/10.1007/s11356-022-24258-0
  • Löffler, B.-M., & Kunze, H. (1989). Refinement of the Coomassie brilliant blue G assay for quantitative protein determination. Analytical Biochemistry, 177(1), 100–102. https://doi.org/10.1016/0003-2697(89)90021-3
  • Man, J. G., Yu, Z. W., & Shi, Y. (2017). Radiation Interception, chlorophyll fluorescence and senescence of flag leaves in winter wheat under supplemental irrigation. Scientific Reports, 7(1), 7767. https://doi.org/10.1038/s41598-017-07414-2
  • Mendoza-Pérez, A. L., & Figueroa-Castro, D. M. (2023). Vegetative reproduction in Pinguicula heterophylla (Lentibulariaceae): differential role of aboveground and belowground biomass. Brazilian Journal of Botany, 46(2), 453–458. https://doi.org/10.1007/s40415-023-00873-0
  • Michel, D., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  • Mobini, M., Khoshgoftarmanesh, A. H., & Ghasemi, S. (2014). The effect of partial replacement of nitrate with arginine, histidine, and a mixture of amino acids extracted from blood powder on yield and nitrate accumulation in onion bulb. Scientia Horticulturae, 176, 232–237. https://doi.org/10.1016/j.scienta.2014.07.014
  • Mobli, Ahmadreza, Rinwa, Abhimanyu, Chauhan, Bhagirath Singh, Sahil,. 2022. Effects of sorghum residue in presence of pre-emergence herbicides on emergence and biomass of Echinochloa colona and Chloris virgata. PLoS One 17 (3):e0265522. https://doi.org/10.1371/JOURNAL.PONE.0265522
  • Mohamad, H. S., Cheng, Q., & Sun, W. L. (2022). The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Patents on Biotechnology, 16(4), 319–328. https://doi.org/10.2174/1872208316666220412133749
  • Ning, Z., Chai, X., Shi, P. L., & Yang, X. C. (2018). Effects of warming and nitrogen addition on plant photosynthate partitioning in an alpine meadow on the Tibetan Plateau. Journal of Plant Growth Regulation, 37(3), 803–812. https://doi.org/10.1007/s00344-017-9775-6
  • Qiao, S., Song, L. L., Li, S. Y., Liu, L., Cai, H. S., Si, L., & Guo, C. H. (2023). Overexpression of CcFALDH from spider plant (Chlorophytum comosum) enhances the formaldehyde removing capacity of transgenic gloxinia (Sinningia speciosa)1. Environmental Research, 223, 115466. https://doi.org/10.1016/j.envres.2023.115466
  • Ramyar, H., Baradaran, F. M., Sobhani, A. R., & Asghari, H. R. (2022). Reduction of lead toxicity effects and enhancing the glutathione reservoir in green beans through spraying sulfur and serine and glutamine amino acids. Environmental Science and Pollution Research International, 30(13), 38157–38173. https://doi.org/10.1007/S11356-022-24819-3
  • Ravi, K. Y., Sahoo, S., Yadav, A. K., & Patil, S. A. (2021). Epipremnum aureum is a promising plant candidate for developing nature-based technologies for nutrients removal from wastewaters. Journal of Environmental Chemical Engineering, 9(5), 106134. https://doi.org/10.1016/j.jece.2021.106134
  • Rosiane, L. S., Severino, L. S., Sampaio, L. R., Sofiatti, V., Gomes, J. A., & Beltrão, N. E. M. (2011). Blends of castor meal and castor husks for optimized use as organic fertilizer. Industrial Crops & Products, 33(2), 364–368. https://doi.org/10.1016/j.indcrop.2010.11.008
  • Sadak, M. S., Bakry, B. A., Abdel-Razik, T. M., & Hanafy, R. S. (2023). Amino acids foliar application for maximizing growth, productivity and quality of peanut grown under sandy soil. Brazilian Journal of Biology = Revista Brasleira de Biologia, 83, e256338. https://doi.org/10.1590/1519-6984.256338
  • Silveira, N. M., Ribeiro, R. V., De, M. S. F. N., De, S. S. C. R., Da, S. S. F., Seabra, A. B., Hancock, J. T., & Machado, E. C. (2021). Leaf arginine spraying improves leaf gas exchange under water deficit and root antioxidant responses during the recovery period. Plant Physiology and Biochemistry, 162, 315–326. https://doi.org/10.1016/J.PLAPHY.2021.02.036
  • Taimur, A., Rasool, K., & Tariq, N. K. (2018). Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. Journal of Plant Nutrition, 41(19), 2438–2445. https://doi.org/10.1080/01904167.2018.1527932
  • Tatjana, M. H., Adriano, N. N., Wagner, L. A., & Hans-Peter, B. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563–1579. https://doi.org/10.1016/j.molp.2015.09.005
  • Teixeira, W. F., Fagan, E. B., Soares, L. H., Umburanas, R. C., Reichardt, K., & Neto, D. D. (2017). Foliar and seed application of amino acids affects the antioxidant metabolism of the soybean crop. Frontiers in Plant Science, 8, 327. https://doi.org/10.3389/fpls.2017.00327
  • Tóth, B., Moloi, M. J., Mousavi, S. M. N., Illés, Á., Bojtor, C., Szőke, L., & Nagy, J. (2022). The evaluation of the effects of Zn, and amino acid-containing foliar fertilizers on the physiological and biochemical responses of a hungarian fodder corn hybrid. Agronomy, 12(7), 1523. https://doi.org/10.3390/agronomy12071523
  • Wang, W.-B., Kim, Y.-H., Lee, H.-S., Kim, K.-Y., Deng, X.-P., & Kwak, S.-S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570–577. https://doi.org/10.1016/j.plaphy.2009.02.009
  • Woith, E., Stintzing, F., & Melzig, M. F. (2017). SOD activity and extremophilicity: A screening of various plant species. Die Pharmazie, 72(8), 490–496. https://doi.org/10.1691/ph.2017.7493
  • Yoneyama, T., & Suzuki, A. (2020). Light-independent nitrogen assimilation in plant leaves: Nitrate incorporation into glutamine, glutamate, aspartate, and asparagine traced by 15N. Plants, 9(10), 1303–1303. https://doi.org/10.3390/plants9101303
  • Zhang, J. H., Xing, M. J., Wang, G. F., Ma, S. J., Wang, S. X., Yang, Q., Chen, X. Y., Zhang, Y. Q., Lyu, Y. J., Wang, X. X., Shi, J. W., Zhao, Y. T., Chen, Y. H., & Wu, L. J. (2022). Ascorbate peroxidase 1 confers resistance to southern corn leaf blight in maize. Journal of Integrative Plant Biology, 64(6), 1196–1211. https://doi.org/10.1111/jipb.13254
  • Zuo, L. J., Dan, W., Le, Y., & Ping, Y. Y. (2021). Phytoremediation of formaldehyde by the stems of Epipremnum aureum and Rohdea japonica. Environmental Science and Pollution Research International, 29(8), 11445–11454. https://doi.org/10.1007/s11356-021-16571-x