388
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Genotype × environment interaction and grain yield stability of quality protein maize hybrids under stress and non-stress environments

ORCID Icon, , , &
Article: 2324537 | Received 26 Jul 2023, Accepted 24 Feb 2024, Published online: 20 Mar 2024

References

  • Abakemal, D., Shimelis, H., & Derera, J. (2016). Genotype-by-environment interaction and yield stability of quality protein maize hybrids developed from tropical-highland adapted inbred lines. Euphytica, 209(3), 1–19. https://doi.org/10.1007/s10681-016-1673-7
  • Abate, T., Fisher, M., Abdoulaye, T., Kassie, G. T., Lunduka, R., Marenya, P., & Asnake, W. (2017). Characteristics of maize cultivars in Africa: How modern are they and how many do smallholder farmers grow? Agriculture & Food Security, 6(1), 30. https://doi.org/10.1186/s40066-017-0108-6
  • Alvarado, G., Rodríguez, F. M., Pacheco, A., Burgueño, J., Crossa, J., Vargas, M., Pérez-Rodríguez, P., & Lopez-Cruz, M. A. (2020). META-R : A software to analyze data from multi-environment plant breeding trials. The Crop Journal, 8(5), 745–756. https://doi.org/10.1016/j.cj.2020.03.010
  • Badu-Apraku, B., Fakorede, M. A. B., Talabi, A. O., Oyekunle, M., Akaogu, I. C., Akinwale, R. O., Annor, B., Melaku, G., Fasanmade, Y., & Aderounmu, M. (2016). Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Science, 56(1), 183–199. https://doi.org/10.2135/cropsci2015.05.0276
  • Bänziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agricultural Water Management, 80(1–3), 212–224. https://doi.org/10.1016/j.agwat.2005.07.014
  • Beyene, Y., Mugo, S., Semagn, K., Asea, G., Trevisan, W., Tarekegne, A., Tefera, T., Gethi, J., Kiula, B., Gakunga, J., Karaya, H., & Chavangi, A. (2013). Genetic distance among doubled haploid maize lines and their testcross performance under drought stress and non-stress conditions. Euphytica, 192(3), 379–392. https://doi.org/10.1007/s10681-013-0867-5
  • Beyene, Y., Semagn, K., Mugo, S., Tarekegne, A., Babu, R., Meisel, B., Sehabiague, P., Makumbi, D., Magorokosho, C., Oikeh, S., Gakunga, J., Vargas, M., Olsen, M., Prasanna, B. M., Banziger, M., & Crossa, J. (2015). Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science, 55(1), 154–163. https://doi.org/10.2135/cropsci2014.07.0460
  • Ertiro, B. T., Beyene, Y., Das, B., Mugo, S., Olsen, M., Oikeh, S., Juma, C., Labuschagne, M., & Prasanna, B. M. (2017). Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and non-stress environments in Kenya. Plant Breeding = Zeitschrift Fur Pflanzenzuchtung, 136(2), 197–205. https://doi.org/10.1111/pbr.12464
  • Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in Eastern and Southern Africa. Climatic Change, 133(2), 283–299. https://doi.org/10.1007/s10584-015-1459-2
  • Gastwirth, J. L., Gel, Y. R., & Miao, W. (2009). The impact of Levene’s test of equality of variances on statistical theory and practice. Statistical Science, 24(3), 343–360. https://doi.org/10.1214/09-STS301
  • Gomez, K., & Gomez, A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley and Sons.
  • Krivanek, A. F., De Groote, H., Gunaratna, N. S., Diallo, A. O., & Friesen, D. K. (2007). Breeding and disseminating quality protein maize (QPM) for Africa. African Journal of Biotechnology, 6, 312–324.
  • Lule, D., Fetene, M., de Villiers, S., & Tesfaye, K. (2014). Additive main effects and multiplicative interactions (AMMI) and genotype by environment interaction (GGE) biplot analyses aid selection of high yielding and adapted finger millet varieties. Journal of Applied Biosciences, 76(1), 6291–6303. https://doi.org/10.4314/jab.v76i1.1
  • Magorokosho, C., Pixley, K. V., & Tongoona, P. (2004). Selection for drought tolerance in two tropical. African Crop Science Journal, 11(3), 151–161. https://doi.org/10.4314/acsj.v11i3.27566
  • Magorokosho, C., Vivek, B., MacRobert, J., & Tarekegne, A. (2010). Characterization of maize germplasm grown in Eastern and Southern Africa. Results of the 2009 regional trials coordinated by CIMMYT. CIMMYT.
  • Makumbi, D., Diallo, A., Kanampiu, F., Mugo, S., & Karaya, H. (2015). Agronomic performance and genotype × environment interaction of herbicide‐resistant maize varieties in eastern Africa. Crop Science, 55(2), 540–555. https://doi.org/10.2135/cropsci2014.08.0593
  • Matongera, N., Ndhlela, T., van Biljon, A., & Labuschagne, M. (2023). Genotype x environment interaction and yield stability of normal and biofortified maize inbred lines in stress and non-stress environments. Cogent Food & Agriculture, 9(1), 2163868. https://doi.org/10.1080/23311932.2022.2163868
  • Mebratu, A., Wegary, D., Mohammed, W., Teklewold, A., & Tarekegne, A. (2019). Genotype × environment interaction of quality protein maize hybrids under contrasting management conditions in Eastern and Southern Africa. Crop Science, 59(4), 1576–1589. https://doi.org/10.2135/cropsci2018.12.0722
  • Mekonnen, T. W., Mekbib, F., Amsalu, B., Gedil, M., & Labuschagne, M. (2022). Genotype by environment interaction and grain yield stability of drought tolerant cowpea landraces in Ethiopia. Euphytica, 218(5), 57. https://doi.org/10.1007/s10681-022-03011-1
  • Mengesha, W., Menkir, A., Meseka, S., Bossey, B., Afolabi, A., Burgueno, J., & Crossa, J. (2019). Factor analysis to investigate genotype and genotype × environment interaction effects on pro-vitamin A content and yield in maize synthetics. Euphytica, 215(11), 1–15. https://doi.org/10.1007/s10681-019-2505-3
  • Meseka, S. K., Menkir, A., Ibrahim, A. E. S., & Ajala, S. O. (2013). Genetic analysis of maize inbred lines for tolerance to drought and low nitrogen. Jonares, 1, 29–36.
  • Ngaboyison, C., Njoroge, K., Kirubi, D., & Githiri, S. M. (2012). Quality protein maize under low N and drought environments : Endosperm modification, protein and tryptophan concentrations in grain. Agricultural Journal, 7(5), 327–338. https://doi.org/10.3923/aj.2012.327.338
  • Nuss, E. T., & Tanumihardjo, S. A. (2011). Quality protein maize for Africa: closing the protein inadequacy gap in vulnerable populations. Advances in Nutrition (Bethesda, MD), 2(3), 217–224. https://doi.org/10.3945/an.110.000182
  • Pacheco, A., Vargas, M., Alvarado, G., Rodríguez, F., & López, M. (2015). Genotype by environment analysis with R software (GEA-R) (pp. 1–42). International Maize and Wheat Improvement Center.
  • Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101–107. https://doi.org/10.1080/02571862.2000.10634878
  • Rezende, W. S., Beyene, Y., Mugo, S., Ndou, E., Gowda, M., Sserumaga, J. P., Asea, G., Ngolinda, I., Jumbo, M., Oikeh, S. O., Olsen, M., Borém, A., Cruz, C. D., & Prasanna, B. M. (2020). Performance and yield stability of maize hybrids in stress-prone environments in Eastern Africa. The Crop Journal, 8(1), 107–118. https://doi.org/10.1016/j.cj.2019.08.001
  • SAS. (2002). Statistical analysis system. Version 9.3 SAS institute Inc.
  • Setimela, P. S., Gasura, E., & Tarekegne, A. T. (2017). Evaluation of grain yield and related agronomic traits of quality protein maize hybrids in Southern Africa. Euphytica, 213(12), 289. https://doi.org/10.1007/s10681-017-2082-2
  • Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/s12571-011-0140-5
  • Sserumaga, J. P., Beyene, Y., Pillay, K., Kullaya, A., Oikeh, S. O., Mugo, S., Machida, L., Ngolinda, I., Asea, G., Ringo, J., Otim, M., Abalo, G., & Kiula, B. (2018). Grain-yield stability among tropical maize hybrids derived from doubled-haploid inbred lines under random drought stress and optimum moisture conditions. Crop & Pasture Science, 69(11), 691–712. https://doi.org/10.1071/CP17348
  • Sserumaga, J. P., Oikeh, S. O., Mugo, S., Asea, G., Otim, M., Beyene, Y., Abalo, G., & Kikafunda, J. (2016). Genotype by environment interactions and agronomic performance of doubled haploids testcross maize (Zea mays L.) hybrids. Euphytica, 207(2), 353–365. https://doi.org/10.1007/s10681-015-1549-2
  • Tandzi, L. N., Mutengwa, C. S., Ngonkeu, E. L. M., Woïn, N., & Gracen, V. (2017). Breeding for Quality Protein Maize (QPM) Varieties. Agronomy, 7(4), 80. https://doi.org/10.3390/agronomy7040080
  • Teklewold, A., Wegary, D., Tadesse, A., Tadesse, B., Bantte, K., Friesen, D., & Prasanna, B. M. (2015). Quality protein maize (QPM): A guide to the technology and its promotion in Ethiopia. CIMMYT, Addis Ababa.
  • Tolessa, T. T., & Gela, T. S. (2014). Sites regression GGE biplot analysis of haricot bean (Phaseolus vulgaris L.) genotypes in three contrasting environments. World Journal of Agricultural Research, 2(5), 228–236. https://doi.org/10.12691/wjar-2-5-5
  • Tukamuhabwa, P., Asiimwe, M., Nabasirye, M., Kabayi, P., & Maphosa, M. (2012). Genotype by environment interaction of advanced generation soybean lines for grain yield in Uganda. African Crop Science Journal, 20(2), 107–116.
  • Vivek, B. S., Krivanek, A. F., Palacios-Rojas, N., Twumasi-Afriyie, S., & Diallo, A. O. (2008). Breeding quality protein maize (QPM): Protocols for developing QPM cultivars. CIMMYT.
  • Wegary, D., Labuschagne, M. T., & Vivek, B. S. (2011). Protein quality and endosperm modification of quality protein maize (Zea mays L.) under two contrasting soil nitrogen environments. Field Crops Research, 121(3), 408–415. https://doi.org/10.1016/j.fcr.2011.01.010
  • Wegary, D., Vivek, B. S., & Labuschagne, M. T. (2014). Combining ability of certain agronomic traits in quality protein maize under stress and nonstress environments in Eastern and Southern Africa. Crop Science, 54(3), 1004–1014. https://doi.org/10.2135/cropsci2013.09.0585
  • Wegary, D., Vivek, B., & Labuschagne, M. (2013). Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica, 191(2), 205–216. https://doi.org/10.1007/s10681-012-0757-2
  • Wolde, L., Keno, T., Tadesse, B., Bogale, G., & Abebe, B. (2018). Mega-environment targeting of maize varieties using Ammi and GGE bi-plot analysis in Ethiopia. Ethiopian Journal of Agricultural Sciences, 28(2), 65–84.
  • Yan, W. (2011). GGE biplot vs. AMMI graphs for genotype-by-environment data analysis. Journal of the Indian Society of Agricultural Statistics, 65(2), 181–193.
  • Yang, R. C., Crossa, J., Cornelius, P. L., & Burgueño, J. (2009). Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Science, 49(5), 1564–1576. https://doi.org/10.2135/cropsci2008.11.0665
  • Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press.
  • Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374
  • Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623–645. https://doi.org/10.4141/P05-169
  • Zobel, R. W., Wright, M. J., & Gauch, H. G.Jr (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388–393. https://doi.org/10.2134/agronj1988.00021962008000030002x