620
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Breeding rice for salinity tolerance and salt-affected soils in Africa: a review

, , , , , , & show all
Article: 2327666 | Received 23 May 2023, Accepted 04 Mar 2024, Published online: 19 Mar 2024

References

  • Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 1. https://doi.org/10.3390/agronomy7010018
  • Adhanom, O. M. (2019). Salinity and sodicity hazard characterization in major irrigated areas and irrigation water sources, Northern Ethiopia. Cogent Food and Agriculture, 5(1), 1673110. https://doi.org/10.1080/23311932.2019.1673110
  • Agarwal, M., Neeta, S., & Harish, P. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27(4), 617–19. https://doi.org/10.1007/s00299-008-0507-z
  • Agegnehu, G., Amede, T., Erkossa, T., Yirga, C., Henry, C., Tyler, R., Nosworthy, M. G., Beyene, S., & Sileshi, G. W. (2021). Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: A review. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(9), 852–869. https://doi.org/10.1080/09064710.2021.1954239
  • Akter, M., & Oue, H. (2018). Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agriculture (Switzerland,), 8(10), 164. https://doi.org/10.3390/agriculture8100164
  • Ali, M. N., Yeasmin, L., Gantait, S., Goswami, R., & Chakraborty, S. (2014). Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 20(4), 411–423. https://doi.org/10.1007/s12298-014-0250-6
  • Alpuerto, V. L. E. B., Norton, G. W., Alwang, J., & Ismail, A. M. (2009). Economic impact analysis of marker-assisted breeding for tolerance to salinity and phosphorous deficiency in rice. Review of Agricultural Economics, 31(4), 779–792. http://www.jstor.org/stable/40588528 https://doi.org/10.1111/j.1467-9353.2009.01466.x
  • Amoah, N. A., Richard, A., Alex, W., Baboucarr, M., Ibnou, D., & Isaac, K. (2020). Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza Sativa L.) using a newly identified donor ‘Madina Koyo. Euphytica, 216(10), 1–23. https://doi.org/10.1007/s10681-020-02689-5
  • Anwar, A., & Kim, J. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences, 21(8), 2695. https://doi.org/10.3390/ijms21082695
  • Anyomi, W. E., Ashalley, R., Amoah, N. A., Blay, E. T., & K, O. (2018). Hydroponic screening of rice seedlings for salinity tolerance. Researchjournali’s Journal of Agriculture, 5(6), 1–15.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry: PPB, 156, 64–77. https://doi.org/10.1016/j.plaphy.2020.08.042
  • Arouna, A., Devkota, K. P., Yergo, W. G., Saito, K., Frimpong, B. N., Adegbola, P. Y., Depieu, M. E., Kenyi, D. M., Ibro, G., Fall, A. A., & Usman, S. (2021). Assessing rice production sustainability performance indicators and their gaps in twelve sub-Saharan African countries. Field Crops Research, 271(3), 108263. https://doi.org/10.1016/j.fcr.2021.108263
  • Asamoah, A., Antwi-Boaasiako, C., Frimpong-Mensah, K., & Soma Dohan, M. (2013). Adoptable technique(s) for managing Ghanaian saline soils. Octa Journal of Environmental Research, 1(1), 48–51.
  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  • Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants (Basel, Switzerland), 12(12), 2253. https://doi.org/10.3390/plants12122253
  • Bhowmik, S. K., Titov, S., Islam, M. M., Siddika, A., Sultana, S., & Haque, M. D. S. (2009). Phenotypic and genotypic screening of rice genotypes at seedling stage for salt tolerance. African Journal of Biotechnology, 8(23), 6490–6494. http://www.academicjournals.org/AJB
  • Bimpong, I. K., Manneh, B., Sock, M., Diaw, F., Amoah, N. K. A., Ismail, A. M., Gregorio, G., Singh, R. K., & Wopereis, M. (2015). Improving salt tolerance of lowland rice cultivar ‘Rassi’ through marker-aided backcross breeding in West Africa. Plant Science: An International Journal of Experimental Plant Biology, 242, 288–299. https://doi.org/10.1016/j.plantsci.2015.09.020
  • Bjornlund, V., Bjornlund, H., & Rooyen Van, A. F. (2020). Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world – a historical perspective. International Journal of Water Resources Development, 36(sup1), S20–S53. https://doi.org/10.1080/07900627.2020.1739512
  • Breseghello, F., & Sorrells, M. E. (2006). Association mapping of kernel size and milling quality in wheat (Triticum Aestivum L.) cultivars. Genetics, 172(2), 1165–1177. https://doi.org/10.1534/genetics.105.044586
  • Calone, R., Sanoubar, R., Lambertini, C., Speranza, M., Vittori Antisari, L., Vianello, G., & Barbanti, L. (2020). Salt tolerance and Na allocation in sorghum bicolor under variable soil and water salinity. Plants (Basel, Switzerland), 9(5), 561. https://doi.org/10.3390/plants9050561
  • Calvert, L., Sanint, L., Châtel, M., & Izquierdo, J. (2004). Rice production in Latin America at critical crossroads. Tropical Agriculture, 55, 65–73. https://hdl.handle.net/10568/65911.
  • Chen, M., Chen, Q.-J., Niu, X.-G., Zhang, R., Lin, H.-Q., Xu, C.-Y., Wang, X.-C., Wang, G.-Y., & Chen, J. (2007). Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant, Soil and Environment, 53(11), 490–498. https://doi.org/10.17221/2302-PSE
  • Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QT L) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1–2), 169–196. https://doi.org/10.1007/s10681-005-1681-5
  • Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection : An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1491), 557–572. https://doi.org/10.1098/rstb.2007.2170
  • Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., & Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell & Environment, 42(3), 998–1018. https://doi.org/10.1111/pce.13494
  • Daba, A. W., & Qureshi, A. S. (2021). Review of soil salinity and sodicity challenges to crop production in the lowland irrigated areas of Ethiopia and its management stategies. Land, 10(12), 1377. https://doi.org/10.3390/land10121377
  • Dasgupta, S., Hossain, M., & Huq, M. (2018). Climate change, salinization and high-yield rice production in coastal Bangladesh. AMBIO: A Journal of the Human Environment, 1(April), 66–89. https://doi.org/10.1596/1813-9450-7140
  • Diao, X., Hazell, P., & Thurlow, J. (2010). The role of agriculture in African development. World Development, 38(10), 1375–1383. https://doi.org/10.1016/j.worlddev.2009.06.011
  • Dionisio-Sese, M. L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135(1), 1–9. https://doi.org/10.1016/S0168-9452(98)00025-9
  • Ehtaiwesh, A. (2022). The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 55–73. https://doi.org/10.47891/sabujas.v0i0.55-73
  • EL Sabagh, A., Çiğ, F., Seydoşoğlu, S., Leonardo, Battaglia, M. L., Javed, T., Iqbal, M. A., Mubeen, M., Ali, M., Ali, M., Bengisu, G., Konuşkan, Ö., Barutcular, C., Erman, M., Açikbaş, S., Hossain, A., Islam, M. S., Wasaya, A., Ratnasekera, D., Arif, M., & Ahmad, Z. (2021). Salinity stress in maize: Effects of stress and recent developments of tolerance for improvement. Cereal Grains, 1–20. https://doi.org/10.5772/intechopen.98745
  • Fageria, N. K., Gheyi, H. R., & Moreira, A. (2011). Nutrient bioavailability in salt affected soils. Journal of Plant Nutrition, 34(7), 945–962. https://doi.org/10.1080/01904167.2011.555578
  • FAO. (2000). Land resource potential and constraints at regional and country levels. World Soil Resources Reports (Vol. 9). FAO.
  • FAO. (2005). Saline soils and their management. FAO.
  • FAO. (2022). Halt soil salinization, boost soil productivity. Proceeding of the Global Symposium on Salt -Affected Soils, 20–22 October 2021, Rome. https://doi.org/10.4060/cb9565en
  • Fulda, S., Gorman, A. M., Hori, O., & Samali, A. (2010). Cellular stress responses: cell survival and cell death. International Journal of Cell Biology, 2010, 214074. https://doi.org/10.1155/2010/214074
  • Garg, A. K., Kim, J., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V., & Wu, R. J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 15898–15903. https://doi.org/10.1073/pnas.252637799
  • Gomiero, T. (2016). Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su80302811–41
  • Gouda, A. C., Warburton, M. L., Djedatin, G. L., Kpeki, S. B., Wambugu, P. W., Gnikoua, K., & Ndjiondjop, M. N. (2021). Development and validation of diagnostic SNP markers for quality control genotyping in a collection of four rice (Oryza) species. Scientific Reports, 11(1), 18617. https://doi.org/10.1038/s41598-021-97689-3
  • Grattan, S. R., Shannon, M. C., & Roberts, S. R. (2002, December). Field study with metallic rings. 189–195.
  • Gregorio, G. B. (1997). No. 30 IRRI Discussion Paper Series. Development, 22(30).
  • Gregorio, G. B., Senadhira, D., & Mendoza, R. D. (1997). Screening rice for salinity tolerance (IRRI Discussion Paper Series No. 22). lnternational Rice Research Institute.
  • Gregorio, G. B., Islam, R., Vergara, G. V., & Thirumeni, S. (2013). Recent advances in rice science to design salinity and other abiotic stress tolerant rice varieties. SABRAO Journal of Breeding and Genetics, 45(1), 31–41.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596–701518. https://doi.org/10.1155/2014/701596
  • Gupta, A., & Shaw, B. P. (2021). Field-and laboratory-based methods of screening salt tolerant genotypes in field- and laboratory-based methods of screening salt tolerant genotypes in rice. Crop and Pasture Science, 72(2), 85. https://doi.org/10.1071/CP20393
  • Gupta, P. K., & Varshney, R. K. (2000). The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 113(3), 163–185. https://doi.org/10.1023/A:1003910819967
  • Haque, M. A., Rafii, M. Y., Yusoff, M. M., Ali, N. S., Yusuff, O., Datta, D. R., Anisuzzaman, M., & Ikbal, M. F. (2021). Advanced breeding strategies and future perspectives of salinity tolerance in rice. Agronomy, 11(8), 1631. https://doi.org/10.3390/agronomy11081631
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmed, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). Springer. https://doi.org/10.1007/978-1-4614-4747-4_2
  • Hassani, A., Azapagic, A., & Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 12(1), 6663. https://doi.org/10.1038/s41467-021-26907-3
  • Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture, 12, 123–145. https://doi.org/10.5772/intechopen.87982
  • Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy, 6(4), 54. https://doi.org/10.3390/agronomy6040054
  • Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takabe, T., & Takabe, T. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 43(1), 103–111. https://doi.org/10.1023/A:1006408712416
  • Hospital, F. (2001). Size of donor chromosome segments around introgressed loci and reduction of linkage drag in marker-assisted backcross programs. Genetics, 158(3), 1363–1379. https://doi.org/10.1093/genetics/158.3.1363
  • Hussain, S., Jun-Hua, Z., Chu, Z., Lian-Feng, Z., Xiao-Chuang, C., Sheng-Miao, Y., James, A. B., Ji-Jie, H., & Qian-Yu, J. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. Journal of Integrative Agriculture, 16(11), 2357–2374. https://doi.org/10.1016/S2095-3119(16)61608-8
  • Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: effects and management in field crops. Climate Change and Agriculture, 12, 123–145. https://doi.org/10.5772/intechopen.87982
  • İbrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Tahjib-Ul-Arif, M. D., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X., & Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007
  • Ismail, A. M., & Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68(1), 405–434. https://doi.org/10.1146/annurev-arplant-042916-040936
  • Ismail, A. M., & Thomson, M. J. (2011). Molecular breeding of rice for problem soils. In A. Costa de Oliveira & R. Varshney (Eds.), Root genomics (pp. 289–311). Springer.
  • Issue, S. S., Munns, R., James, R. A., & Avenue, O. S. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025–1043. https://doi.org/10.1093/jxb/erj100
  • Jaiswal, S., Gautam, R. K., Singh, R. K., Krishnamurthy, S. L., Ali, S., Sakthivel, K., Iquebal, M. A., Rai, A., & Kumar, D. (2019). Harmonizing technological advances in phenomics and genomics for enhanced salt tolerance in rice from a practical perspective. Rice (New York, NY), 12(1), 89. https://doi.org/10.1186/s12284-019-0347-1
  • Jie, C., Jing-Zhang, C., Man-Zhi, T., & Zi-Tong, G. (2002). Soil degradation: A global problem endangering sustainable development. Journal of Geographical Sciences, 12(2), 243–252. https://doi.org/10.1007/BF02837480
  • Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., & Reddy, K. R. (2019). Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice (New York, NY), 12(1), 57. https://doi.org/10.1186/s12284-019-0317-7
  • Kargbo, S. S., Showemimo, F. A., Porbeni, J. B. O., & Akintokun, P. O. (2019). Response of rice genotypes to salinity under hydroponic conditions. Agro-Science, 18(3), 11. https://doi.org/10.4314/as.v18i3.3
  • Kathuli, P., Itabari, J. K., Sijali, I. V., Gatuthu, J., & Kiaura, S. (2014). Diagnosis of sources of soil salinisation in selected irrigation schemes in semi-arid lands of Taita-Taveta County in Kenya. Joint proceedings of the 27th Soil Science Society of East Africa and the 6th African Soil Science Society, October 2013 (pp. 1–9).
  • Kayode, O. T., Aizebeokhai, A. P., & Odukoya, A. M. (2021). Soil salinity and its implications on sustainable agriculture in southern and northcentral states of Nigeria soil salinity and its implications on sustainable agriculture in southern and northcentral states of Nigeria. IOP Conference Series: Earth and Environmental Science, 655(1), 012077. https://doi.org/10.1088/1755-1315/655/1/012077
  • Kim, K. W., Bhagwat, N., Jungrye, N., S, H. C., Jungmin, H., & Yong, J. P. (2022). Development of an inclusive 580K SNP array and its application for genomic selection and genome-wide association studies in rice. Frontiers in Plant Science, 13, 1036177. https://doi.org/10.3389/fpls.2022.1036177
  • Kordrostami, M., & Rahimi, M. (2015). Molecular markers in plants: concepts and applications. Syria Studies, 7(1), 37–72. https://www.jstor.org/stable/41857625
  • Krishnamurthy, S. L., Gautam, R. K., Sharma, P. C., & Sharma, D. K. (2016). Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Research, 190, 26–33. https://doi.org/10.1016/j.fcr.2016.02.018
  • Krishnamurthy, S. L., Lokeshkumar, B. M., Rathor, S., Warraich, A. S., Yadav, S., Gautam, R. K., Sing, R. K., & Sharma, P. C. (2022). Development of salt-tolerant rice varieties to enhancing productivity in salt-affected environments. Environtal Science. Proceednins, 13, 30. https://doi.org/10.3390/environsciproc2022016030
  • Krishnamurthy, S. L., Pundir, P., Warraich, A. S., Rathor, S., Lokeshkumar, B. M., Singh, N. K., & Sharma, P. C. (2020). Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage. Frontiers in Plant Science, 11(June), 833. https://doi.org/10.3389/fpls.2020.00833
  • Ku, Y., Sintaha, M., Cheung, M., & Lam, H. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences, 19(10), 3206. https://doi.org/10.3390/ijms19103206
  • Kumar, R., Dhansu, P., Kulshreshtha, N., Meena, M. R., Kumaraswamy, M. H., Appunu, C., Chhabra, M. L., & Pandey, S. K. (2023). Identification of salinity tolerant stable sugarcane cultivars using AMMI, GGE and some other stability parameters under multi environments of salinity stress. Sustainability, 15(2), 1119. https://doi.org/10.3390/su15021119
  • Kumar, P., & Sharma, P. K. (2020). Soil salinity and food security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781
  • Kumar, V. V. S., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V., & Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in Indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 26(6), 1099–1110. https://doi.org/10.1007/s12298-020-00819-w
  • Kurokawa, Y., Noda, T., Yamagata, Y., Angeles-Shim, R., Sunohara, H., Uehara, K., Furuta, T., Nagai, K., Jena, K. K., Yasui, H., Yoshimura, A., Ashikari, M., & Doi, K. (2016). Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Science: An International Journal of Experimental Plant Biology, 242, 131–139. https://doi.org/10.1016/j.plantsci.2015.09.008
  • Lal, R., & Stewart, B. (2019). Soil degradation and restoration in Africa (1st ed.). CRC Press.
  • Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19(9), 998–1011. https://doi.org/10.1089/ars.2012.5074
  • Liao, Y. D., Lin, K. H., Chen, C. C., & Chiang, C. M. (2016). Oryza Sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Molecular Breeding, 36(3), 1–19. https://doi.org/10.1007/s11032-016-0446-2
  • Liu, Y., Wang, F., Zhang, A., Chen, Z., Luo, X., Kong, D., Zhang, F., Yu, X., Liu, G., & Luo, L. (2023). Improvement of salinity tolerance in water-saving and drought-resistance rice (WDR). International Journal of Molecular Sciences, 24(6), 5444. https://doi.org/10.3390/ijms24065444
  • Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911. https://doi.org/10.3389/fpls.2020.591911
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Maïga, Y., Mawussi, G., Faye, O. N., & Fall, A. (2020). Screening of rice lines (Oryza Spp L. 1753) for salinity tolerance at vegetative stage under Senegal River valley conditions. Journal of Experimental Agriculture International, 42(4), 71–81. https://doi.org/10.9734/jeai/2020/v42i430501
  • Mbarki, S., Sytar, O., Cerda, A., Zivcak, M., Rastogi, A., He, X., Zoghlami, A., Abdelly, C., & Brestic, M. (2018). Strategies to mitigate the salt stress effects on photosyntheticapparatus and productivity of crop plants. In V. Kumar, S. H. Wani, P. Suprasanna, & L.-S. P. Tran (Eds.), Salinity responses and tolerance in plants, Volume 1: Targeting sensory, transport and signaling mechanisms (pp. 85–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-75671-4_4
  • Meliyo, J. L., Kashenge-Killenga, S., Victor, K. M., Mfupe, B., Hiza, S., Kihupi, L., Boman, B., & Dick, W. (2016). Evaluation of salt affected soils for rice (Oryza Sativa) production in Ndungu irrigation scheme same district, Tanzania. Sustainable Agriculture Research, 6(1), 24–38. https://doi.org/10.5539/sar.v6n1p24
  • Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133(3), 481–489. https://doi.org/10.1111/j.1399-3054.200801090.x
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Mishra, P., Bhoomika, K., & Dubey, R. S. (2013). Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive indica rice (Oryza sativa L.) seedlings. Protoplasma, 250(1), 3–19. https://doi.org/10.1007/s00709-011-0365-3
  • Mishra, A., & Tanna, B. (2017). Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science, 8, 829. https://doi.org/10.3389/fpls.2017.00829
  • Moatabarniya, S., Rad, A. C., Sima, N. A. K., Askari, H., Zeinalabedini, M., Hesarkhani, Z., & Ghaffari, M. R. (2022). Morphological and anatomical changes of Salicornia roots are associated with different salinity and nutrients conditions in contrasting genotypes. Rhizosphere, 24, 100629. https://doi.org/10.1016/j.rhisph.2022.100629
  • Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173. https://doi.org/10.1093/aob/mcm052
  • Mosier, S., Córdova, S. C., & Robertson, G. P. (2021). Restoring soil fertility on degraded lands to meet food, fuel, and climate security needs via perennialization. Frontiers in Sustainable Food Systems, 5(October), 1–18. https://doi.org/10.3389/fsufs.2021.706142
  • Mukasa, N. A., Woldemichael, D. A., Salami, O. A., & Simpasa, M. A. (2017). Africa’s agricultural transformation: Identifying priority areas and overcoming challenges. Africa Economic Brief, 8(3), 1–16.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Munns, R., & Munns, R. (2005). Genes and salt tolerance: Bringing them together. The New Phytologist, 167(3), 645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Muthayya, S., Sugimoto, J. D., Montgomery, S., & Maberly, G. F. (2014). An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 1324(1), 7–14. https://doi.org/10.1111/nyas.12540
  • Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401
  • Nakhla, W. R., Wenqiang, S., Kai, F., Kang, Y., Chaopu, Z., & Sibin, Y. (2021). Identification of qtls for salt tolerance at the germination and seedling stages in rice. Plants (Basel, Switzerland), 10(3), 428. https://doi.org/10.3390/plants10030428
  • Nongpiur, R. C., Singla-Pareek, S. L., & Pareek, A. (2016). Genomics approaches for improving salinity stress tolerance in crop plants. Current Genomics, 17(4), 343–357. https://doi.org/10.1111/nyas.12540
  • Obalum, S. E., Buri, M. M., Nwite, J. C., Watanabe, Y., Igwe, C. A., Wakatsuki, T., & Hermansah. (2012). Soil degradation-induced decline in productivity of sub-Saharan African soils : The prospects of looking downwards the lowlands with the sawah ecotechnology. Applied and Environmental Soil Science, 2012, 1–10. 2012 https://doi.org/10.1155/2012/673926
  • Obata, T., Kitamoto, H. K., Nakamura, A., Fukuda, A., & Tanaka, Y. (2007). Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology, 144(4), 1978–1985. https://doi.org/10.1104/pp.107.101154
  • Osman, K. T. (2013). Saline and sodic soils. In K. T. Osman (Ed.), Management of soil problems (pp. 255–298). Springer International Publishing. https://doi.org/10.1007/978-3-319-75527-4.63
  • Phang, T. H., Shao, G., & Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196–1212. https://doi.org/10.5772/intechopen.102835
  • Pratiwi, H., Nugrahaeni, N., & Taufiq, A. (2021). Identification of peanut germplasm tolerance to salinity stress. Buletin Palawija, 19(1), 1. https://doi.org/10.21082/bulpa.v19n1.2021.p1-9
  • Qin, H., Li, Y., & Huang, R. (2020). Advances and challenges in the breeding of salt-tolerant rice. International Journal of Molecular Sciences, 21(21), 8385. https://doi.org/10.3390/ijms21218385
  • Rad, H. E., Aref, F., & Rezaei, M. (2012). Response of rice to different salinity levels during different growth stages. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3040–3047. https://doi.org/10.1016/S2095-3119(16)61608-8
  • Rahman, A. N. M. R. (2022). Trends in rice research : 2030 and beyond, 1–17. https://doi.org/10.1002/fes3.390
  • Rasheed, A., Li, H., Nawaz, M., Mahmood, A., Hassan, M. U., Shah, A. N., Hussain, F., Azmat, S., Gillani, S. F. A., Majeed, Y., Qari, S. H., & Wu, Z. (2022). Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective. Frontiers in Plant Science, 13(7), 966749. https://doi.org/10.3389/fpls.2022.966749
  • Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y., & Hasanuzzaman, M. (2020). Seed priming with phytohormones: An effective approach for the mitigation of abiotic stress. Plants, 10(1), 37. https://doi.org/10.3390/plants10010037
  • Rivero, R. M., Mittler, R., Blumwald, E., & Zandalinas, S. I. (2022). Developing climate-resilient crops: Improving plant tolerance to stress combination. The Plant Journal: For Cell and Molecular Biology, 109(2), 373–389. https://doi.org/10.1111/tpj.15483
  • Ryu, H., & Cho, Y. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58(3), 147–155. https://doi.org/10.1007/s12374-015-0103-z
  • Sahoo, S., & Baranda, B. (2018). Salinity tolerance in wheat. Marumegh, 3(1), 61–65. https://doi.org/10.3390/plants12183330
  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over-expression of a single Ca 2 + -dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal: For Cell and Molecular Biology, 23(3), 319–327. https://doi.org/10.3389/fpls.2022.1043757
  • Salih, S. A., & Elsheik, M. A. (2014, March 17–18). The nature and properties of salt affected soil in South Khartoum [Paper presentation]. International Conference on Biological, Civil and Environmental Engineering (BCEE-2014)]. https://doi.org/10.15242/IICBE.C0314140
  • Sarhadi, E., Bazargani, M. M., Sajise, A. G., Abdolahi, S., Vispo, N. A., Arc-Eta, M., Nejad, G. M., Singh, R. K., & Salekdeh, G. H. (2012). Proteomic analysis of rice anthers under salt stress. Plant Physiology and Biochemistry: PPB, 58, 280–287. https://doi.org/10.1016/j.plaphy.2012.07.013
  • Segal, R., & Minh, L. N. (2019). Unfair harvest. The State of Rice in Asia, March 2018 (pp. 1–3). https://doi.org/10.21201/2019.4184
  • Sharif, I., Aleem, S., Farooq, J., Rizwan, M., Younas, A., Sarwar, G., & Chohan, S. M. (2019). Salinity stress in cotton: Effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 25(4), 807–820. https://doi.org/10.1007/s12298-019-00676-2
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. https://doi.org/10.3390/biom9070285
  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer.
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Sing, R., Gb, G., & Jain, R. (2007). QTL mapping for salinity tolerance in rice. Physiology and Molecular Biology of Plants, 13, 87–99. https://doi.org/10.1038/s41598-022-21737-9
  • Singh, R. K., Kota, S., & Flowers, T. J. (2021). Salt tolerance in rice: Seedling and reproductive stage QTL mapping come of age. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 134(11), 3495–3533. https://doi.org/10.1007/s00122-021-03890-3
  • Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., Prasad, K. S. N., Kondayya, K., Rao, P. V. R., Rani, M. G., Anuradha, T., Suraynarayana, Y., Sharma, P. C., Krishnamurthy, S. L., Sharma, S. K., Dwivedi, J. L., Singh, A. K., Singh, P. K., Singh, N. K., Kumar, R., & Nilanjay. (2015). From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science: An International Journal of Experimental Plant Biology, 242, 278–287. https://doi.org/10.1016/j.plantsci.2015.08.008
  • Singla-Pareek, S. L., Yadav, K., Pareek, A., Sopory, ÆM. K., & Reddy, S. K. (2008). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 17(2), 171–180. https://doi.org/10.1007/s11248-007-9082-2
  • Sitta, B., Kashenge, S., Lee, S.-B., Kyung-Ho, K., Bulegeya, V., Batare, M., & Mwakapala, R. (2022). Morphogenetic response of assorted rice genotypes to salinity in Tanzania. European Journal of Agriculture and Food Sciences, 4(5), 19–27. https://doi.org/10.24018/ejfood.2022.4.5.504
  • Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447. https://doi.org/10.1093/aob/mcu239
  • Songtoasesakul, D., Aesomnuk, W., Pannak, S., Siangliw, J. L., Siangliw, M., Toojinda, T., Wanchana, S., & Arikit, S. (2023). QTL-seq identifies pokkali-derived QTLs and candidate genes for salt tolerance at seedling stage in rice. Agriculture, 13(8), 1596. https://doi.org/10.3390/agriculture13081596
  • Sripinyowanich, S., Klomsaku, L. P., Boonburapong, B., Bangyeekhun, T., Asami, T., Gu, H., Buaboocha, T., & Chadchawan, E. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of Os P5CS1 and Os P5CR gene expression duringsalt stress. Environmental and Experimental Botany, 86, 94–105. https://doi.org/10.3390/ijms24065444
  • Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831
  • Stavridou, E., Hastings, A., Webster, R. J., & Robson, P. R. H. (2017). The impact of soil salinity on the yield, composition and physiology of the bioenergy grass miscanthus × giganteus. GCB Bioenergy, 9(1), 92–104. https://doi.org/10.1111/gcbb.12351
  • Stepien, P., & Johnson, G. N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiology, 149(2), 1154–1165. https://doi.org/10.1104/pp.108.132407
  • Subudhi, P. K., Shankar, R., & Jain, M. (2020). Whole genome sequence analysis of rice genotypes with contrasting response to salinity stress. Scientific Reports, 10(1), 21259. https://doi.org/10.1038/s41598-020-78256-8
  • Tabassum, R., Tahjib-Ul-Arif, M., Hasanuzzaman, M., Sohag, A. A. M., Islam, M. S., Shafi, S. M. S. H., Islam, M. M., & Hassan, L. (2021). Screening salt-tolerant rice at the seedling and reproductive stages: An effective and reliable approach. Environmental and Experimental Botany, 192(August), 104629. https://doi.org/10.1016/j.envexpbot.2021.104629
  • Tang, X., Mu, X., Shao, H., Wang, H., & Brestic, M. (2014). Global plant-responding mechanisms to salt stress: Physiological and molecular levels and implications in biotechnology. Environmental and Experimental Botany, 8551, 1–13. https://doi.org/10.3109/07388551.2014.889080
  • Thiam, S., Villamor, G. B., Faye, L. C., Henri, J., Sène, B., Diwediga, B., & Kyei, N. (2021). Monitoring land use and soil salinity changes in coastal landscape: A case study from Senegal. Environmental Monitoring and Assessment, 193(5), 259. https://doi.org/10.1007/s10661-021-08958-7
  • Tully, K., Sullivan, C., Weil, R., & Sanchez, P. (2015). The state of soil segradation in sub-Saharan Africa: Baselines, trajectories, and solutions. Sustainability, 7(6), 6523–6552. https://doi.org/10.3390/su7066523
  • Umego, C., Ntui, V. O., Ita, E. E., Opara, C., & Uyoh, E. A. (2020). Screening of rice accessions for tolerance to drought and salt stress using morphological and physiological parameters. American Journal of Plant Sciences, 11(12), 2080–2102. https://doi.org/10.4236/ajps.2020.1112147
  • van Oort, P. A. J., & Zwart, S. J. (2018). Impacts of climate change on rice production in Africa and causes of simulated yield changes. Global Change Biology, 24(3), 1029–1045. https://doi.org/10.1111/gcb.13967
  • Van Oort, P. A. J., Saito, K., Tanaka, A., Amovin-Assagba, E., Van Bussel, L. G. J., Van Wart, J., de Groot, H., van Ittersum, M. K., Cassman, K. G., & Wopereis, M. C. S. (2015). Assessment of rice self-sufficiency in 2025 in eight African countries. Global Food Security, 5, 39–49. https://doi.org/10.1016/j.gfs.2015.01.002
  • Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 86. https://doi.org/10.1186/s12870-016-0771-y
  • Wang, Y., Deng, C., Liu, Y., Niu, Z., & Li, Y. (2018). Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. The Science of the Total Environment, 621, 177–185. https://doi.org/10.1016/j.scitotenv.2017.11.222
  • Waziri, A., Kumar, P., & Purty, R. S. (2016). Saltol QTL and their role in salinity tolerance in rice. Austin Journal of Biotechnology & Bioengineering, 3(3), 1067.
  • Xie, L., Zheng, C., Li, W., Pu, M., Zhou, G., Sun, W., Wu, X., Zhao, X., & Xie, X. (2021). Mapping and identification a salt-tolerant QT L in a salt - resistant rice. Journal of Plant Growth Regulation, 41(6), 2347–2358. https://doi.org/10.1007/s00344-021-10448-6
  • Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid – inducible mitogen-activated protein kinase. The Plant Cell, 15(3), 745–759. https://doi.org/10.1105/tpc.008714
  • Xu, Y., Pengcheng, L., Zefeng, Y., & Chenwu, X. (2017). Genetic mapping of quantitative trait loci in crops. The Crop Journal, 5(2), 175–184. https://doi.org/10.1016/j.cj.2016.06.003
  • Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., & Xia, G. (2020). How plant hormones mediate salt stress responses. Trends in Plant Science, 25(11), 1117–1130. https://doi.org/10.1016/j.tplants.2020.06.008
  • Yue, E., Cao, H., & Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza Sativa. Plants (Basel, Switzerland), 9(10), 1337. https://doi.org/10.3390/plants9101337
  • Yu, Z., Zhang, D., Xu, Y., Jin, S., Zhang, L., Zhang, S., Yang, G., Yan, K., Wu, C., Zheng, C., & Huang, J. (2019). CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in arabidopsis. Journal of Experimental Botany, 70(19), 5457–5469. https://doi.org/10.1093/jxb/erz302
  • Zafar, K., Sedeek, K. E. M., Rao, G. S., Khan, M. Z., Amin, I., Kamel, R., Mukhtar, Z., Zafar, M., Mansoor, S., & Mahfouz, M. M. (2020). Genome editing technologies for rice improvement: Progress, prospects, and safety concerns. Frontiers in Genome Editing, 2, 5. https://doi.org/10.3389/fgeed.2020.00005
  • Zeng, L., & Shannon, M. (2005). Salinity effects on seedling growth and yield components of different inbred rice lines. Pakistan Journal of Botany, 37(1), 131–139.
  • Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48(3), 191–206. https://doi.org/10.1016/S0378-3774(00)00146-3
  • Zhang, Y., Fang, J., Wu, X., & Dong, L. (2018). Na +/K + balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza Sativa L.) under salt stress. BMC Plant Biology, 18(1), 375. https://doi.org/10.1186/s12870-018-1586-9
  • Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39(3), 47. https://doi.org/10.1007/s11032-019-0954-y
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 1–16. https://doi.org/10.3390/ijms22094609
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. Innovation (Cambridge (Mass.)), 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017
  • Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6(5), 441–445. https://doi.org/10.1016/s1369-5266(03)00085-2