306
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Individual and combined effects of moringa leaf, ginger and garlic powder on growth and innate immune response of Clarias gariepinus juveniles

, , , , , , , , & show all
Article: 2328427 | Received 06 Feb 2023, Accepted 05 Mar 2024, Published online: 30 Apr 2024

References

  • Abd El-Gawad, E. A., El Asely, A. M., Soror, E. I., Abbass, A. A., & Austin, B. (2020). Effect of dietary Moringa oleifera leaf on the immune response and control of Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus) fry. Aquaculture International, 28(1), 1–10. https://doi.org/10.1007/s10499-019-00469-0
  • Abdel-Hakim, N., Lashin, M., Ashry, A., & Al-Azab, A. D. (2010). Effect of fresh or dried garlic as a natural feed supplement on growth performance and nutrients utilization of the Nile Tilapia (Oreochromis niloticus). Egyptian Journal of Aquatic Biology and Fisheries, 14(2), 19–38. https://doi.org/10.21608/ejabf.2010.2058
  • Abdel-Tawwab, M., Khalil, R. H., Diab, A. M., Khallaf, M. A., Abdel Razek, N., Abdel-Latif, H. M., & Khalifa, E. (2021). Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and cytokine genes in zearalenone-intoxicated European seabass. Fish Shellfish Immunology, 113, 35–41. https://doi.org/10.1016/j.fsi.2021.03.012
  • Adel, M., Dawood, M. A., Gholamhosseini, A., Sakhaie, F., & Banaee, M. (2021). Effect of the extract of lemon verbena (Aloysia citrodora) on the growth performance, digestive enzyme activities, and immune-related genes in Siberian sturgeon (Acipenser baerii). Aquaculture, 541, 191–219.
  • Adeniji, C. A., Wusu, D., & Falana, E. O. (2019). Individual and combined effects of moringa leaf and garlic powder on growth and plasma biochemical indices of Clarias gariepinus Juveniles. American Journal of Food Science and Technology, 7(5), 137–145. https://doi.org/10.12691/ajfst-7-5-1
  • Ahmadifar, E., Sheikhzadeh, N., Roshanaei, K., Dargahi, N., & Faggio, C. (2019). Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture, 507, 341–348. https://doi.org/10.1016/j.aquaculture.2019.04.049
  • Ajeel, S. G., & Al-Faragi, J. K. (2013). Effect of ginger, (Zingiber officinale) and garlic, (Allium sativum) to enhance health of common carp, Cyprinus carpio. The Iraqi Journal of Veterinary Medicine, 37(1), 59–62. https://doi.org/10.30539/iraqijvm.v37i1.332
  • Ashad, H. R., Fahad, M. A., & Salah, M. A. (2014). Active ingredients of ginger as potential candidates in the prevention and treatment of diseases through modulation of biological activities. International Journal of Physiology, Pathophysiology and Pharmacology, 6(2), 125–136.
  • Ayoade, W. G., Amoo, I. A., Lajide, L., & Ajayi, M. G. (2022). Phytochemicals and antioxidant potential of ginger (Zingiber officinale) and garlic (Allium sativum) extracts. GSC Biological and Pharmaceutical Sciences, 19(1), 226–234. https://doi.org/10.30574/gscbps.2022.19.1.0144
  • Batiha El-Saber, Gaber, Amany Magdy Beshbishy, Lamiaa G. Wasef, Yaser H. A. Elewa, Ahmed A. Al-Sagan, Mohamed E. Abd El-Hack, Ayman E. Taha, Yasmina M. Abd-Elhakim, & Hari Prasad Devkota. (2020). Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872
  • Baud, V., & Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends in Cell Biology, 11(9), 372–377. https://doi.org/10.1016/s0962-8924(01)02064-5
  • Biller-Takahashi, J. D., & Urbinati, E. C. (2014). Fish immunology: The modification and manipulation of the innate immune system: Brazilian studies. Anais da Academia Brasileira de Ciencias, 86(3), 1484–1506. https://doi.org/10.1590/0001-3765201420130159
  • Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2017). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208
  • Cordero, H., Cellballlos-Francisco, D., Cuesta, A., & Esteban, M. A. (2017). Dorso-ventral skin characterization of the farmed fish gilthead seabream (Sparus aurata). PLoS One, 12(6), e0180438. https://doi.org/10.1371/journal.pone.0180438
  • Faisal, A. S. R. (2003). Adverse effects of some antimicrobial agents used in fish [PhD thesis]. Faculty of Veterinary Medicine, Cairo University.
  • Fazelan, Z., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., & Yousefi, M. (2020). Effects of dietary ginger (Zingiber officinale) administration on growth performance and stress, immunological, and antioxidant responses of common carp (Cyprinus carpio) reared under high stocking density. Aquaculture, 518, 734833. https://doi.org/10.1016/j.aquaculture.2019.734833
  • Fazlolahzadeh, F., Keramati, K., Nazifi, S., Shirian, S., & Seifi, S. (2011). Effect of garlic (Allium sativum) on hematological parameters and plasma activities of ALT and AST of Rainbow trout in temperature stress. Australian Journal of Basic & Applied Sciences, 5, 84–90.
  • Ferreira, P. M. P., Farias, D. F., Oliveira, J. T. D. A., & Carvalho, A. D. F. U. (2008). Moringa oleifera: Bioactive compounds and nutritional potential. Revista de Nutrição, 21, 431–437.
  • Hoseinifar, S. H., Ringø, E., Shenavar Masouleh, A., & Esteban, M. Á. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: A review. Reviews in Aquaculture, 8(1), 89–102. https://doi.org/10.1111/raq.12082
  • Iheanacho, S., Ogunji, J. O., Ogueji, E. O., Nwuba, L. A., Nnatuanya, I. O., Ochang, S. N., Mbah, C. E., Ibrahim, B. U., & Haruna, M. (2017). Comparative assessment of ampicillin antibiotic and ginger (Zingiber officinale) effects on growth, haematology and biochemical enzymes of Clarias gariepinus Juvenile. Journal of Pharmacognosy and Phytochemistry, 6(3), 761–767.
  • Lee, D. H., Lim, S. R., Han, J. J., Lee, S. W., Ra, C. S., & Kim, J. D. (2014). Effects of dietary garlic powder on growth, feed utilization and whole body composition changes in fingerling Sterlet sturgeon, Acipenser ruthenus. Asian-Australasian Journal of Animal Sciences, 27(9), 1303–1310. https://doi.org/10.5713/ajas.2014.14087
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Martin, S. A., & Król, E. (2017). Nutrigenomics and immune function in fish: New insights from omics technologies. Developmental and Comparative Immunology, 75, 86–98. https://doi.org/10.1016/j.dci.2017.02.024
  • Megbowon, I., Adejonwo, O. A., Adeyemi, Y. B., Kolade, O. Y. & A. A. A., Adetoye. (2013). Effect of garlic on growth performance, nutrient utilization and survival of an ecotype cichlid, ‘Wesafu’. IOSR Journal of Agriculture and Veterinary Science, 6(3), 10–13. https://doi.org/10.9790/2380-0631013
  • Mohebbi, A., Nematollahi, A., Ebrahimi Dorcheh, E., & Goodarzian Asad, F. (2012). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 43(8), 1184–1193. https://doi.org/10.1111/j.1365-2109.2011.02922.x
  • Nutrient Requirements of Fish – NRC. (2001). Nutrient requirements of fish and shrimp. National Academy Press.
  • Nwabueze, A. A. (2012). The effect of garlic (Allium sativum) on growth and haematological parameters of Clarias gariepinus (Burchell, 1822). Sustainable Agriculture Research, 1(2), 222–228. https://doi.org/10.5539/sar.v1n2p222
  • Nyadjeu, P., Yemdjie, D. D. M., Ndjuissi, N. A. T., Nguenang, G. N., Dedou, N. Y. C., & Tabi-Tomedi, M. E. (2021). Effect of Zingiber officinale and Allium sativum powders as natural feed additives promoting growth, feed utilization and whole-body composition in Clarias gariepinus fry. Food and Nutrition Sciences, 12(06), 526–543. https://doi.org/10.4236/fns.2021.126040
  • Oh, H. Y., Lee, T. H., Lee, D. Y., Lee, C. H., Joo, M. S., Kim, H. S., & Kim, K. D. (2022). Dietary supplementation with ginger (Zingiber officinale) residue from juice extraction improves Juvenile Black Rockfish (Sebastes schlegelii) growth performance, antioxidant enzyme activity and resistance to Streptococcus iniae infection. Animals, 12(5), 546. https://doi.org/10.3390/ani12050546
  • Palanisamy, V., Jakymiw, A., Van Tubergen, E. A., D’Silva, N. J., & Kirkwood, K. L. (2012). Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. Journal of Dental Research, 91(7), 651–658. https://doi.org/10.1177/0022034512437372
  • Panserat, S., & Kaushik, S. (2010). Regulation of gene expression by nutritional factors in fish. Aquaculture Research, 41(5), 751–762. https://doi.org/10.1111/j.1365-2109.2009.02173.x
  • Payung, C. A., Tumbol, R. A., & Manoppco, H. (2017). Dietary ginger (Zinigiber officinale) enhance resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Aquaculture, Aquarium, Conservation and Legislation, 10(4), 962–968.
  • Ratna, S. S. (2015). Medicinal use of ginger (Zinigiber officinale) improves growth and enhances immunity in aquaculture. International Journal of Chemical Studies, 3, 83–87.
  • Saeij, J. P., Stet, R. J., de Vries, B. J., van Muiswinkel, W. B., & Wiegertjes, G. F. (2003). Molecular and functional characterization of carp TNF: A link between TNF polymorphism and trypano tolerance. Developmental and Comparative Immunology, 27(1), 29–41. https://doi.org/10.1016/s0145-305x(02)00064-2
  • Sebastián, R., Kevin, M., Felipe, R., Daniela, T., Ana-María, S., & Mónica, I. (2012). Fish cytokines and immune response. In New advances and contributions to fish biology.
  • Shalab, Y. A. M., Khattab, Y. A., & Abdel-Rahman, A. M. (2006). Effects of garlic (Allium sativa) and chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia (Oreochromis niloticus). Journal of Venomous Animals and Toxins Including Tropical Disease, 12, 172–201.
  • Shalaby, A. M., Khattab, Y. A., & Abdel, R. A. M. (2006). Effects of garlic (Allium sativum) and chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia (Oreochromis niloticus). Journal of Venomous Animals and Toxins Including Tropical Diseases, 12(2), 172–201. https://doi.org/10.1590/S1678-91992006000200003
  • Sherif, A. H., El-Gomol, A. M. ,& Tolan, A. E. (2014). Incorporation of Moringer oleifera in Nile tilapia (Oreochromis niloticus) diet and its effect on growth performance and immune status. Journal of Vetinary Science, 1(1), 8.6–8.14.
  • Smith, N. C., Rise, M. L., & Christian, S. L. (2019). A com­parison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Frontiers in Immunology, 10, 2292. https://doi.org/10.3389/fimmu.2019.02292
  • Talpur, A., Ikhwanuddin, M., & Abol-Munafi, A. B. (2013). Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture, 401, 46–52. https://doi.org/10.1016/j.aquaculture.2013.02.04
  • Temitope, J. (2012). Effect of garlic (Allium sativum) on growth, nutrient utilization, resistance and survival of Tilapia zillii (Gervais 1852) fingerlings. Journal of Agricultural Science. 4(2), 269–274.
  • Wankhede, S. D., Dutta, N., Tambe, M. B., Kaur, N., Jadhav, S. E., & Pattanaik, A. K. (2022). Effect of dietary inclusion of Moringa oleifera foliage on nutrient metabolism, metabolic profile, immunity and growth performance of goat kids. Emerging Animal Species, 3, 100005.