194
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

POA optimized VGG16-SVM architecture for severity level classification of Ascochyta blight of chickpea

ORCID Icon & ORCID Icon
Article: 2336002 | Received 12 Jan 2024, Accepted 25 Mar 2024, Published online: 08 Apr 2024

References

  • Amin, M., & Melkamu, F. (2014). Management of Ascochyta blight (Ascochyta rabiei) in Chickpea Using a New Fungicide. Research in Plant Sciences, 2(1), 1–10.
  • Belay, A. J., Salau, A. O., Ashagrie, M., & Haile, M. B. (2022). Development of a chickpea disease detection and classification model using deep learning. Informatics in Medicine Unlocked, 31, 100970. https://doi.org/10.1016/j.imu.2022.100970
  • Benzohra, I. E., Bendahmane, B. S., Labdi, M., & Benkada, M. Y. (2012). Determination of pathotypes and physiological races in Ascochyta rabiei, the agent of Ascochyta blight in chickpea (Cicer arietinum L.) in Algeria. African Journal of Agricultural Research, 7(7), 1214–1219. https://doi.org/10.5897/AJAR11.1810
  • Caballo, C., Castro, P., Gil, J., Millan, T., Rubio, J., & Die, J. V. (2019). Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. Sp. Ciceris race 5. PloS One, 14(10), e0224212. https://doi.org/10.1371/journal.pone.0224212
  • Chauhan, R., Ghanshala, K. K., & Joshi, R. (2018). Convolutional Neural Network (CNN) for Image Detection and Recognition [Paper presentation].2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). https://www.academia.edu/44667910/Convolutional_Neural_Network_CNN_for_Image_Detection_and_Recognition https://doi.org/10.1109/ICSCCC.2018.8703316
  • CSA. (2019). Agricultural sample survey, Area and production of major Crops, private holdings for 2011/12 mehere season, vol I, pp. 1–54.
  • Dangmei, G., Singh, V. K., & Sharma, A. (2023). Effect of organic source of nutrients on growth, yield and quality of chickpea Effect of organic source of nutrients on growth, yield and quality of chickpea (Cicer arietinum L.). April 2023.
  • FAO. (2020). World food and agriculture - statistical yearbook, 1–366. Rome. https://doi.org/10.4060/cb1329en
  • FAO. (2021). World food and agriculture - statistical yearbook 2021, 1–368.  Rome. https://doi.org/10.4060/cb4477en
  • FAO. (2022). World food and agriculture – statistical yearbook, 1–382. Rome. https://doi.org/10.4060/cc2211en
  • Foresto, E., Carezzano, M. E., Giordano, W., & Bogino, P. (2023). Ascochyta blight in Chickpea: An update. Journal of Fungi (Basel, Switzerland), 9(2), 203. https://doi.org/10.3390/jof9020203
  • Haque, M. A., Marwaha, S., Arora, A., Deb, C. K., Misra, T., Nigam, S., & Hooda, K. S. (2022). A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize. Frontiers in Plant Science, 13, 1077568. https://doi.org/10.3389/fpls.2022.1077568
  • Hayit, T., Endes, A., & Hayit, F. (2023). The severity level classification of Fusarium wilt of chickpea by pre ‑ trained deep learning models. Journal of Plant Pathology, 106(1), 93–105. https://doi.org/10.1007/s42161-023-01520-z
  • Iman, M., Arabnia, H. R., & Rasheed, K. (2023). A review of deep transfer learning and recent advancements. Technologies, 11(2), 40. https://doi.org/10.3390/technologies11020040
  • Jubair. (2011). An Enhanced Decision Based Adaptive Median Filtering Technique to Remove Salt and Pepper Noise in Digital Images. Proceedings of 14th International Conference on Computer and Information Technology (ICClT 2011), ICClT, 22–24.
  • Khan, M. A., Khan, M. A., Ahmed, F., Mittal, M., Goyal, L. M., Jude Hemanth, D., & Satapathy, S. C. (2020). Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognition Letters, 131, 193–204. https://doi.org/10.1016/j.patrec.2019.12.024
  • Krizhevsky, A., & Ilya Sutskever, G. E. H. (2012). Imagenet classifcation with deep convolutional neural networks. Advances in Neural Information Processing Systems. Handbook of Approximation Algorithms and Metaheuristics, 25, 1–9.
  • Kumar, S., Bhambri, M. C., Porte, S. S., & Saxena, R. R. (2023). Evaluation of chickpea (Cicer arietinum L.). Cultivars under Organic Production System, 12(9), 603–607.
  • Kundu, N., Rani, G., Singh, V., Gupta, K., Chandra, S., Vocaturo, E., & Zumpano, E. (2022). Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Artificial Intelligence in Agriculture, 6, 276–291. https://doi.org/10.1016/j.aiia.2022.11.002
  • Lamba, S., Kukreja, V., Rashid, J., Gadekallu, T. R., Kim, J., Baliyan, A., Gupta, D., & Saini, S. (2023). A novel fine-tuned deep-learning-based multi-class classifier for severity of paddy leaf diseases. Front. Plant Sci. 14:123406, 01–18. https://doi.org/10.3389/fpls.2023.1234067
  • Lecun. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.47. https://doi.org/10.1080/0144929X.2020.1856928
  • Mahmood, M. T., Ahmad, M., & Ali, I. (2019). Chickpea blight : former efforts on pathogenicity, resistant germplasm and disease management 2 regional agricultural research institute, Bahawalpur. Pakistan Gomal University Journal of Research, 35(1), 1–10.
  • Pande, S., Sharma, M., Gaur, P. M., Tripathi, S., Kaur, L., Basandrai, A., Khan, T., Gowda, C. L. L., & Siddique, K. H. M. (2011). Development of screening techniques and identification of new sources of resistance to Ascochyta blight disease of chickpea. Australasian Plant Pathology, 40(2), 149–156. https://doi.org/10.1007/S13313-010-0024-8/TABLES/2
  • Pastor, S., Crociara, C., Valetti, L., Peña Malavera, A., Fekete, A., Allende, M. J., & Carreras, J. (2022). Screening of chickpea germplasm for Ascochyta blight resistance under controlled environment. Euphytica, 218, 12, 1–11. https://doi.org/10.1007/s10681-021-02963-0
  • Rawal, V., & Navarro, D. K. (2019). The Global Economy of Pulses. Rome, FAO. 1–190. http://www.fao.org/3/i7108en/I7108EN.pdf
  • Sanderson, M. (2010). Christopher D. Manning, prabhakar raghavan, hinrich schütze, introduction to information retrieval, cambridge university press. Natural Language Engineering, 16(1), 100–103. https://doi.org/10.1017/S1351324909005129
  • Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., & Huang, H. (2023). Recent advances in plant disease severity assessment using convolutional neural networks. Scientific Reports, 13(1), 2336. https://doi.org/10.1038/s41598-023-29230-7
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1–14.
  • Singh, A. (2016). Comparative analysis of gaussian filter with wavelet denoising for various noises present in images. Indian Journal of Science and Technology, 9(1), 1–8. https://doi.org/10.17485/ijst/2016/v9i47/106843
  • Smith, R. A., & Wilson, M. S. (2019). Transfer learning in deep neural networks: A review. Medical Image Analysis, 30, 1–18.
  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision [Paper presentation]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 2818–2826. https://doi.org/10.1109/CVPR.2016.308
  • Venkatesan, R., & Li, B. (2017). Convolutional neural networks in visual computing : A concise guide (1st ed.). CRC Press. https://doi.org/10.4324/9781315154282
  • Vinothini, R., Niranjana, G., & Yakub, F. (2023). A novel classification model using optimal long short ‑ term memory for classification of COVID ‑ 19 from CT images. Journal of Digital Imaging, 36(6), 2480–2493. https://doi.org/10.1007/s10278-023-00852-7
  • Williams, C. K. I. (2003). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Journal of the American Statistical Association, 98(462), 489–489. https://doi.org/10.1198/jasa.2003.s269
  • Worku, C., Adugna, M., Mussa, E. C., & Mengstu, M. (2023). Analysis market outlet choice of smallholder chickpea producers in Northwest part of Ethiopia. Cogent Food & Agriculture, 9(2), 1–12. https://doi.org/10.1080/23311932.2023.2285226
  • Zhang, N., Zhang, X., Shang, P., Ma, R., Yuan, X., Li, L., & Bai, T. (2023). Detection of cotton verticillium wilt disease severity based on hyperspectrum and GWO-SVM.