154
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Factors influencing the quality of Royal jelly and its components: a review

, , &
Article: 2348253 | Received 07 Sep 2023, Accepted 23 Apr 2024, Published online: 09 May 2024

References

  • Al–Kahtani, S. N., & Taha, E. K. A. (2020). Post grafting time significantly influences royal jelly yield and content of macro and trace elements. PloS One, 15(9), 1. https://doi.org/10.1371/journal.pone.0238751
  • Al–Kahtani, S., & Taha, E. K. A. (2021). Effect of harvest time on royal jelly yield and chemical composition. Journal of the Kansas Entomological Society, 93(2), 132–13. https://doi.org/10.2317/0022–8567–93.2.132
  • Altaye, S. Z., Meng, L., & Li, J. (2019). Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie, 50(4), 436–453. https://doi.org/10.1007/s13592–019–00656–1
  • Apostol, L., Belc, N., Vlăsceanu, G., Abălaru, C., Drăgancea, B., & Gaceu, L. (2019). Cocktails with bee products processed in functional products. Journal of EcoAgriTourism, 15(1), 51–56.
  • Arfa, A., Ria, Y. E., & Nikeety, M. (2021). Quality parameters of royal jelly in national and international standards: specifications, differences and suggestions. Annals of the Romanian Society for Cell Biology, 25(3), 7977–7997.
  • Bălan, A., Moga, M. A., Dima, L., Toma, S., Elena Neculau, A., & Anastasiu, C. V. (2020). Royal jelly–A traditional and natural remedy for postmenopausal symptoms and aging–related pathologies. Molecules (Basel, Switzerland), 25(14), 3291. https://doi.org/10.3390/molecules25143291
  • Bogdanov, S. (2011). Royal jelly, bee brood: composition, health, medicine: a review. Lipids, 3(8), 8–19.
  • Bogdanov, S., Martin, P., & Lüllmann, C. (1997a). Harmo–nised methods of the European Honey Commission Determination of hydroxymethylfurfuralafter White. Apidologie (Extra Issue), 28, 25–27.
  • Boselli, E., Caboni, M., Sabatini, A., Marcazzan, G., & Lercker, G. (2003). Determination and changes of free amino acids in royal jelly during storage. Apidologie, 34(2), 129–137. https://doi.org/10.1051/apido:2003011
  • Collazo, N., Carpena, M., Nuñez–Estevez, B., Otero, P., Simal–Gandara, J., & Prieto, M. A. (2021). Health promoting properties of bee royal jelly: Food of the queens. Nutrients, 13(2), 543. https://doi.org/10.3390/nu13020543
  • Dai, J., Shu, R., Liu, J., Xia, J., Jiang, X., & Zhao, P. (2021). Transcriptome analysis of Apis mellifera under benomyl stress to discriminate the gene expression in response to development and immune systems. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 56(6), 594–605. https://doi.org/10.1080/03601234.2021.1930795
  • Daniele, G., & Casabianca, H. (2012). Sugar composition of French royal jelly for comparison with commercial and artificial sugar samples. Food Chemistry, 134(2), 1025–1029. https://doi.org/10.1016/j.foodchem.2012.03.008
  • Dobritzsch, D., Aumer, D., Fuszard, M., Erler, S., & Buttstedt, A. (2019). The rise and fall of major royal jelly proteins during a honeybee (Apis mellifera) workers’ life. Ecology and Evolution, 9(15), 8771–8782. https://doi.org/10.1002/ece3.5429
  • Drapeau, M. D., Albert, S., Kucharski, R., Prusko, C., & Maleszka, R. (2006). Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research, 16(11), 1385–1394. https://doi.org/10.1101/gr.5012006
  • Ellis, J. D., & Ellis, A. (2009). African Honey Bee, Africanized Honey Bee, Killer Bee, Apis mellifera scutellata Lepeletier (Insecta: Hymenoptera: Apidae): EENY 429/IN790, rev. 11/2009. EDIS, 2009(2), 1–7. https://doi.org/10.32473/edis–in790–2009
  • Ferioli, F., Marcazzan, G. L., & Caboni, M. F. (2007). Determination of (E)–10–hydroxy–2–decenoic acid content in pure royal jelly: a comparison between a new CZE method and HPLC. Journal of Separation Science, 30(7), 1061–1069. https://doi.org/10.1002/jssc.200600416
  • Garcia-Amoedo, L. H., & Almeida-Muradian, L. B. D. (2007). Physicochemical composition of pure and adulterated royal jelly. Química Nova, 30, 257–259. https://doi.org/10.1590/S0100–40422007000200002
  • Gemeda, M., Legesse, G., Damto, T., & Kebaba, D. (2020). Harvesting royal jelly using splitting and grafting queen rearing methods in Ethiopia. Bee World, 97(4), 114–116. https://doi.org/10.1080/0005772X.2020.1817657
  • Genç, M., & Aslan, A. (1999). Determination of trans–10–hydroxy–2–decenoic acid content in pure royal jelly and royal jelly products by column liquid chromatography. Journal of Chromatography. A, 839(1-2), 265–268. https://doi.org/10.1016/s0021–9673(99)00151–x
  • Guo, J., Wang, Z., Chen, Y., Cao, J., Tian, W., Ma, B., & Dong, Y. (2021). Active components and biological functions of royal jelly. Journal of Functional Foods, 82, 104514. https://doi.org/10.1016/j.jff.2021.104514
  • Han, B., Fang, Y., Feng, M., Hu, H., Qi, Y., Huo, X., Meng, L., Wu, B., & Li, J. (2015). Quantitative neuropeptidome analysis reveals neuropeptides are correlated with social behavior regulation of the honeybee workers. Journal of Proteome Research, 14(10), 4382–4393. https://doi.org/10.1021/acs.jproteome.5b00632
  • Hassoun, A., Jagtap, S., Trollman, H., Garcia-Garcia, G., Abdullah, N. A., Goksen, G., Bader, F., Ozogul, F., Barba, F. J., Cropotova, J., Munekata, P. E. S., & Lorenzo, J. M. (2022). Food processing 4.0: Current and future developments spurred by the fourth industrial revolution. Food Control. 145, 109507. https://doi.org/10.1016/j.foodcont.2022.109507
  • Honda, Y., Araki, Y., Hata, T., Ichihara, K., Ito, M., Tanaka, M., & Honda, S. (2015). 10–Hydroxy–2–decenoic acid, the major lipid component of royal jelly, extends the lifespan of Caenorhabditis elegans through dietary restriction and target of rapamycin signaling. Journal of Aging Research, 2015, 425261–425267. https://doi.org/10.1155/2015/425261
  • Hossen, M. S., Nahar, T., Gan, S. H., & Khalil, M. I. (2019). Bioinformatics and therapeutic insights on proteins in royal jelly. Current Proteomics, 16(2), 84–101. https://doi.org/10.2174/1570164615666181012113130
  • International Organization for Standardization. (2016). ISO/DIS 12824:2016. Royal jelly – Specifications (1st ed.). Geneva, Switzerland.
  • Jarvis, C. G. (2023). The effects of urbanization on disease prevalence in managed honey bee hives in Hamilton County, Tennessee (Master’s thesis). The University of Tennessee at Chattanooga, Chattanooga, Tennessee.
  • Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473(7348), 478–483. https://doi.org/10.1038/nature10093
  • Kanelis, D., Tananaki, C., Liolios, V., Dimou, M., Goras, G., Rodopoulou, M. A., Karazafiris, E., & Thrasyvoulou, A. (2015). A suggestion for royal jelly specifications. Arhiv za Higijenu Rada i Toksikologiju, 66(4), 275–284. https://doi.org/10.1515/aiht–2015–66–2651
  • Kausar, S. H., & More, V. R. (2019). Royal Jelly. Organoleptic characteristics and physicochemical properties. Lipids, 6(2), 20–24.
  • Khan, K. A., Ghramh, H. A., Ahmad, Z., El–Niweiri, M. A., & Ahamed Mohammed, M. E. (2021). Queen cells acceptance rate and royal jelly production in worker honey bees of two Apis mellifera races. PloS One, 16(4), e0248593. https://doi.org/10.1371/journal.pone.0248593
  • Kotronoulas, A., de Lomana, A. L. G., Karvelsson, S. T., Heijink, M., Stone, R., II, Giera, M., & Rolfsson, O. (2021). Lipid mediator profiles of burn wound healing: Acellular cod fish skin grafts promote the formation of EPA and DHA derived lipid mediators following seven days of treatment. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 175, 102358. https://doi.org/10.1016/j.plefa.2021.102358
  • Krell, R. (1996). Value–added products from beekeeping., FAO Agricultural Services Bulletin 124. Food and Agriculture Organization of the United Nations. ISBN 92–5–103819–8;157–184.
  • Kunugi, H., & Mohammed Ali, A. (2019). Royal jelly and its components promote healthy aging and longevity: From animal models to humans. International Journal of Molecular Sciences, 20(19), 4662. https://doi.org/10.3390/ijms20194662
  • Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique–Office International Des Epizooties, 27(2), 499–510.
  • Lercker, G. (2003). La gelatina reale: composizione, autenticità ed adulterazione. In Atti del Convegno “Strategie per la valorizzazione dei prodotti dell’alveare” (pp. 67–81). Università degli Studi del Molise.
  • Lercker, G., Caboni, M. F., Vecchi, M. A., Sabatini, A. G., & Nanetti, A. (1993). Caratterizzazione dei principali costituenti della gelatina reale. Apicoltura, 8(8), 27–37.
  • Lercker, G., Savioli, S., Vecchi, M. A., Sabatini, A. G., Nanetti, A., & Piana, L. (1986). Carbohydrate determination of royal jelly by high resolution gas chromatography (HRGC). Food Chemistry, 19(4), 255–264. https://doi.org/10.1016/0308–8146(86)90049–X
  • Lercker, G., Vecchi, M. A., Piana, L., Sabatini, A. G., & Nanetti, A. (1984). Composition de la fraction lipidique de la gelée de larves d’abeilles reines et ouvrières (Apis mellifera ligustica Spinola) en fonction de l’âge des larves. Apidologie, 15(3), 303–314. https://doi.org/10.1051/apido:19840303
  • Li, J., Feng, M., Begna, D., Fang, Y., & Zheng, A. (2010). Proteome comparison of hypopharyngeal gland development between Italian and royal jelly producing worker honeybees (Apis mellifera L.). Journal of Proteome Research, 9(12), 6578–6594. https://doi.org/10.1021/pr100768t
  • Li, J., Feng, M., Zhang, Z., & Pan, Y. (2008). Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie, 39(2), 199–214. https://doi.org/10.1051/apido:2007059
  • Liu, Q., Kandasamy, S., Zhai, W., Wang, H., Veeran, Y., Gao, A., & Chen, C. T. A. (2022). Temperature is a better predictor of stable carbon isotopic compositions in marine particulates than dissolved CO2 concentration. Communications Earth & Environment, 3(1), 303. https://doi.org/10.1038/s43247–022–00627–y
  • Liu, J. R., Yang, Y. C., Shi, L. S., & Peng, C. C. (2008). Antioxidant properties of royal jelly associated with larval age and time of harvest. Journal of Agricultural and Food Chemistry, 56(23), 11447–11452. https://doi.org/10.1021/jf802494e
  • Ma, C., Ma, B., Li, J., & Fang, Y. (2022). Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping. Food Research International (Ottawa, ON), 155, 111091. https://doi.org/10.1016/j.foodres.2022.111091
  • Martin, N., Hulbert, A. J., Brenner, G. C., Brown, S. H., Mitchell, T. W., & Else, P. L. (2019). Honey bee caste lipidomics in relation to life–history stage and the long life of the queen. Journal of Experimental Biology, 222(24), jeb207043. https://doi.org/10.1242/jeb.207043
  • Marx, Í. M., Veloso, A. C., Casal, S., Pereira, J. A., & Peres, A. M. (2021). Sensory analysis using electronic tongues. In Innovative food analysis (pp. 323–343). Academic Press.
  • Mouro, G. F., & Toledo, V. A. A. (2004). Evaluation of Apis mellifera Carniolan and Africanized honeybees in royal jelly production. Brazilian Archives of Biology and Technology, 47(3), 469–476. https://doi.org/10.1590/S1516–89132004000300018
  • Nicolson, S. W., & Human, H. (2013). Chemical composition of the ‘low quality’pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie, 44(2), 144–152. https://doi.org/10.1007/s13592–012–0166–5
  • Ohlinger, B. D., Schürch, R., Durzi, S., Kietzman, P. M., Silliman, M. R., & Couvillon, M. J. (2022). Honey bees (Hymenoptera: Apidae) decrease foraging but not recruitment after neonicotinoid exposure. Journal of Insect Science, 22(1), 16. https://doi.org/10.1093/jisesa/ieab095
  • Oršolić, N. (2013). Učinkovitost biološki aktivnih sastavnica matične mliječi: analiza I standardizacija [Royal jelly: component efficiency, analysis, and standardisation]. Arhiv za Higijenu Rada i Toksikologiju, 64(3), 445–461.
  • Page, Jr, R. E., Rueppell, O., & Amdam, G. V. (2012). Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annual Review of Genetics, 46(1), 97–119. https://doi.org/10.1146/annurev–genet–110711–155610
  • Pattamayutanon, P., Peng, C. C., Sinpoo, C., & Chantawannakul, P. (2018). Effects of pollen feeding on quality of royal jelly. Journal of Economic Entomology, 111(6), 2974–2978. https://doi.org/10.1093/jee/toy251
  • Piana, L. (1996). Value-added products from beekeeping – Royal jelly. FAO Agricultural Services Bulletin, 124, 195–226. Food and Agriculture Organization of the United Nations: Rome
  • Pourtallier, J., Davico, R., & Rognone, M. C. (1990). Les analyses dans le contrôle de pureté de la gelée royale. Abeille de France et L’Apiculteur, 753, 405–407.
  • Ratajczak, M., Kaminska, D., Matuszewska, E., Hołderna–Kedzia, E., Rogacki, J., & Matysiak, J. (2021). Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules (Basel, Switzerland), 26(13), 4007. https://doi.org/10.3390/molecules26134007
  • Sabatini, A. G., Marcazzan, G. L., Caboni, M. F., Bogdanov, S., & Almeida-Muradian, L. B. D. (2009). Quality and standardisation of royal jelly. Journal of ApiProduct and ApiMedical Science, 1(1), 16–21. https://doi.org/10.3896/IBRA.4.01.1.04
  • Saricaoglu, F. T., Cinar, A., Demircan, H., & Oral, R. A. (2019). Rheological and microstructural characterization of royal jelly at different temperatures. Journal of Food Process Engineering, 42(8), e13285. https://doi.org/10.1111/jfpe.13285
  • Šedivá, M., Laho, M., Kohútová, L., Mojžišová, A., Majtán, J., & Klaudiny, J. (2018). 10–HDA, A major fatty acid of royal jelly, exhibits pH dependent growth–inhibitory activity against different strains of Paenibacillus larvae. Molecules (Basel, Switzerland), 23(12), 3236. https://doi.org/10.3390/molecules23123236
  • Serra Bonvehi, J. (1991). Study of adulteration of royal jelly with other honeybees products and water. Investigacion Agraria. Produccion y Sanidad Animales (Spain), 6(2), 99–111.
  • Shen, L. R., Wang, Y. R., Zhai, L., Zhou, W. X., Tan, L. L., Li, M. L., Liu, D. D., & Xiao, F. (2015). Determination of royal jelly freshness by ELISA with a highly specific anti–apalbumin 1, major royal jelly protein 1 antibody. Journal of Zhejiang University. Science. B, 16(2), 155–166. https://doi.org/10.1631/jzus.B1400223
  • Simuth, J. (2001). Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie, 32, 69–80.
  • Taha, E. A., Al–Kahtani, S., & Taha, R. (2019). Protein content and amino acids composition of bee–pollens from major floral sources in Al–Ahsa, eastern Saudi Arabia. Saudi Journal of Biological Sciences, 26(2), 232–237. https://doi.org/10.1016/j.sjbs.2017.06.003
  • Takikawa, M., Kumagai, A., Hirata, H., Soga, M., Yamashita, Y., Ueda, M., Ashida, H., & Tsuda, T. (2013). 10‐Hydroxy‐2‐decenoic acid, a unique medium‐chain fatty acid, activates 5’‐AMP‐activated protein kinase in L 6 myotubes and mice. Molecular Nutrition & Food Research, 57(10), 1794–1802. https://doi.org/10.1002/mnfr.201300041
  • Teresa, S., Helena, R.-C., Ewa, W., & Piotr, S. (2009). Water determination in bee products using the Karl Fischer titration method. Journal of Apicultural Science, 53, 49–56.
  • Tourn, M. L., Lombard, A., Belliardo, F., & Buffa, M. (1980). Quantitative analysis of carbohydrates and organic acids in honeydew, honey and royal jelly by enzymic methods. Journal of Apiculture Research, 19(2), 144–146. https://doi.org/10.1080/00218839.1980.11100013
  • Uthaibutra, V., Kaewkod, T., Prapawilai, P., Pandith, H., & Tragoolpua, Y. (2023). Inhibition of skin pathogenic ­bacteria, antioxidant and anti–inflammatory activity of royal jelly from Northern Thailand. Molecules (Basel, Switzerland), 28(3), 996. https://doi.org/10.3390/molecules28030996
  • Wang, M., Gong, Q., Liu, W., Tan, S., Xiao, J., & Chen, C. (2022). Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical, and food analysis (2019–2021). Journal of Separation Science, 45(11), 1918–1941. https://doi.org/10.1002/jssc.202100727
  • Wang, W., Li, X., Li, D., Pan, F., Fang, X., Peng, W., & Tian, W. (2023). Effects of major royal jelly proteins on the immune response and gut microbiota composition in cyclophosphamide–treated mice. Nutrients, 15(4), 974. https://doi.org/10.3390/nu15040974
  • Yan, S., Wang, X., Sun, M., Wang, W., Wu, L., & Xue, X. (2022). Investigation of the lipidomic profile of royal jelly from different botanical origins using UHPLC–IM–Q–TOF–MS and GC–MS. LWT, 169, 113894. https://doi.org/10.1016/j.lwt.2022.113894
  • Youngsteadt, E., Appler, R. H., López–Uribe, M. M., Tarpy, D. R., & Frank, S. D. (2015). Urbanization increases pathogen pressure on feral and managed honey bees. PloS One, 10(11), e0142031. https://doi.org/10.1371/journal.pone.0142031
  • Zhou, J., Zhao, J., Yuan, H., Meng, Y., Li, Y., Wu, L., & Xue, X. (2007). Comparison of UPLC and HPLC for determination of trans–10–hydroxy–2–decenoic acid content in royal jelly by ultrasound–assisted extraction with internal standard. Chromatographia, 66(3–4), 185–190. https://doi.org/10.1365/s10337–007–0305–8