220
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Effects of zinc nanoparticles and proline on growth, physiological and yield characteristics of pea (Pisum sativum L.) irrigated with diluted seawater

ORCID Icon, , , , , , , , & show all
Article: 2348695 | Received 02 Apr 2024, Accepted 24 Apr 2024, Published online: 09 May 2024

References

  • Abdel-Aziz, N. G., Mazher, A. A., Mahgub, M. H., Darwish, M. A., Nassar, R. M. A., & Abdel-Aal1, A. S. (2020). Effect of salinity stress on growth, chemical constituents and stem anatomy of Duranta erecta L. plants. Middle East Journal of Agriculture Research, 9(4), 1–22.
  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
  • Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R., & Ashraf, M. (2017). Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant ­enzymes, and flavonoid content. Journal of Plant Interactions, 12(1), 429–437. https://doi.org/10.1080/17429145.2017.1385867
  • Ahmed, S., Ahmed, S., Roy, S. K., Woo, S. H., Sonawane, K. D., & Shohael, A. M. (2019). Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4(1), 361–373. https://doi.org/10.1515/opag-2019-0033
  • Al Jabri, H., Saleem, M. H., Rizwan, M., Hussain, I., Usman, K., & Alsafran, M. (2022). Zinc oxide nanoparticles and their biosynthesis: Overview. Life, 12(4), 594. https://doi.org/10.3390/life12040594
  • Alprol, A. E., Mansour, A. T., El-Beltagi, H. S., & Ashour, M. (2023). Algal extracts for green synthesis of zinc oxide nanoparticles: Promising approach for algae bioremediation. Materials, 16(7), 2819. https://doi.org/10.3390/ma16072819
  • Al-Zahrani, H. S., Alharby, H. F., Hakeem, K. R., & Rehman, R. U. (2021). Exogenous application of zinc to mitigate the salt stress in Vigna radiata (L.) wilczek—Evaluation of physiological and biochemical processes. Plants, 10(5), 1005. https://doi.org/10.3390/plants10051005
  • Amiri Forotaghe, Z., Souri, M. K., Ghanbari Jahromi, M., & Mohammadi Torkashvand, A. (2022). Influence of humic acid application on onion growth characteristics on the water deficit conditions. Journal of Plant Nutrition. 45(7), 1030–1040. https://doi.org/10.1080/01904167.2021.1994604
  • AOAC. (1990). Official methods of analysis (15th ed.). Association of Official Analytical Chemist.
  • AOAC. (2000). Official methods of analysis (18th ed.). Association of Official Analytical Chemists, Inc.
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical ­indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
  • Azzedine, F., Gherroucha, H., & Baka, M. (2011). Improvement of salt tolerance in durum wheat by ascorbic acid application improvement of salt tolerance in durum. Journal of Stress Physiology and Biochemistry, 7(1), 27–37.
  • Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. 1. (2023). Plants’ Response Mechanisms to Salinity Stress. Plants, 12(12), 2253. https://doi.org/10.3390/plants12122253
  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060
  • Begna, T. (2020). Effects of drought stress on crop production and productivity. International Journal of Research Studies in Agricultural Sciences (IJRSAS), 6(9), 34–43.
  • Ben Ahmed, C., Magdich, S., Ben Rouina, B., Sensoy, S., Boukhris, M., & Ben Abdullah, F. (2011). Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids, 40(2), 565–573. https://doi.org/10.1007/s00726-010-0677-1
  • Ben Rejeb, K., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry: PPB, 80, 278–284. https://doi.org/10.1016/J.PLAPHY.2014.04.007
  • Bessada, S. M., Barreira, J. C., Barros, L., Ferreira, I. C., & Oliveira, M. B. P. (2016). Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.F.: An underexploited and highly disseminated species. Industrial Crops and Products, 89, 45–51. https://doi.org/10.1016/j.indcrop.2016.04.065
  • Betzen, B. M., Smart, C. M., Maricle, K. L., & MariCle, B. R. (2019). Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species. Transactions of the Kansas Academy of Science, 122(1-2), 49–58. https://doi.org/10.1660/062.122.0105
  • Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress. a review. Annals of Botany, 91 Spec No(2), 179–194. https://doi.org/10.1093/aob/mcf118
  • Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2013). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177–186. https://doi.org/10.1093/jpe/rts017
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1006/abio.1976.9999
  • Castiglione, M. R., Bottega, S., Sorce, C., & Spanò, C. (2023). Effects of zinc oxide particles with different sizes on root development in Oryza sativa. Rice Science, 30(5), 449–458. https://doi.org/10.1016/j.rsci.2023.03.016
  • Castillo, J. M., Mancilla-Leytón, J. M., Martins-Noguerol, R., Moreira, X., Moreno-Pérez, A. J., Muñoz-Vallés, S., Pedroche, J. J., Figueroa, M. E., García-González, A., Salas, J. J., Millán-Linares, M. C., Francisco, M., & Cambrollé, J. (2022). Interactive effects between salinity and nutrient deficiency on biomass production and bio-active compounds accumulation in the halophyte Crithmum maritimum. Scientia Horticulturae, 301, 111136. https://doi.org/10.1016/j.scienta.2022.111136
  • Chattha, M. U., Amjad, T., Khan, I., Nawaz, M., Ali, M., Chattha, M. B., Ali, H. M., Ghareeb, R. Y., Abdelsalam, N. R., Azmat, S., Barbanti, L., & Hassan, M. U. (2022). Mulberry based zinc nano-particles mitigate salinity ­induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Frontiers in Plant Science, 13, 920570. https://doi.org/10.3389/fpls.2022.920570
  • Chen, Y., & Hoehenwarter, W. (2015). Changes in the phosphosproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiology, 169(4), 3021–3033. https://doi.org/10.1104/pp.15.01486
  • Dane, J. H., and Topp, C. G. (Eds.) (2020). Methods of soil analysis, Part 4: Physical methods (vol. 20). John Wiley & Sons. Soil Science Society of America.
  • Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11(1), 1–42. https://doi.org/10.2307/3001478
  • Ebrahimi, M., Souri, M. K., Mousavi, A., & Sahebani, N. (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chemical and Biological Technologies in Agriculture, 8(1), 1–14. https://doi.org/10.1186/s40538-021-00216-9
  • El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science, 11, 1127: 1–16. https://doi.org/10.3389/fpls.2020.01127
  • El-Beltagi, H. S., Ahmad, I., Basit, A., Abd El-Lateef, H. M., Yasir, M., Tanveer, S. S., Ullah, I., Elsayed, M. M. M., Ali, I., Ali, F., Ali, S., Aziz, I., Kandeel, M., & Ikram, M. Z. (2022a). Effect of Azospirillum and Azotobacter species on the performance of cherry tomato under different salinity levels. Gesunde Pflanzen, 74(2), 487–499. https://doi.org/10.1007/s10343-022-00625-2
  • El-Beltagi, H. S., Ahmad, I., Basit, A., Shehata, W. F., Hassan, U., Shah, S. T., Haleema, B., Jalal, A., Amin, R., Khalid, M. A., Noor, F., & Mohamed, H. I. (2022b). Ascorbic acid enhances growth and yield of sweet peppers (Capsicum annum) by mitigating salinity stress. Gesunde Pflanzen, 74(2), 423–433. https://doi.org/10.1007/s10343-021-00619-6
  • El-Beltagi, H. S., Al-Otaibi, H. H., Parmar, A., Ramadan, K. M. A., Lobato, A., & El-Mogy, M. M. (2023). Application of potassium humate and salicylic acid to mitigate salinity stress of common bean. Life (Basel, Switzerland), 13(2), 448. https://doi.org/10.3390/life13020448
  • El-Saied, R. M., & Elsayed, M. S. (2022). Effect of different concentrations from zinc oxide nanoparticles prepared in date pits extract on pea (Pisum sativum L.) plant. Egyptian Journal of Chemistry, 65(8), 575–582. https://doi.org/10.21608/EJCHEM.2022.121988.5465
  • El-Shafai, N. M., Mostafa, Y. S., Ramadan, M. S., & M El-Mehasseb, I. (2024). Enhancement efficiency delivery of antiviral Molnupiravir-drug via the loading with self-assembly nanoparticles of pycnogenol and cellulose which are decorated by zinc oxide nanoparticles for COVID-19 therapy. Bioorganic Chemistry, 143, 107028. https://doi.org/10.1016/j.bioorg.2023.107028
  • Farkhondeh, R., Nabizadeh, E., & Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. International Journal of AgriScience, 2(5), 385–392.
  • Gaballah, M. M., El-Agoury, R. Y., Abo-Marzoka, E. A., Hamad, H. S., Abu Elezz, A. F., Shehab, M. M., Al-Ashkar, I., Aamir Iqbal, M., Liyun, L., & El Sabagh, A. (2023). Genetic analysis of rice genotypes with contrasting response to aerobic conditions. Pakistan Journal of Botany, 55(5), 1–16. https://doi.org/10.30848/PJB2023-5(26)
  • Ghanem, A. E. M. F. M., Mohamed, E., Kasem, A. M. M. A., & El-Ghamery, A. A. (2021). Differential salt tolerance strategies in three halophytes from the same ecological habitat: Augmentation of antioxidant enzymes and compounds. Plants (Basel, Switzerland), 10(6), 1100. https://doi.org/10.3390/plants10061100
  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed., pp. 680). John Wiley and Sons.
  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701518–701596. https://doi.org/10.1155/2014/701596
  • Hafeez, B. M. K. Y., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American Journal of Experimental Agriculture, 3(2), 374–391. https://doi.org/10.9734/AJEA/2013/2746
  • Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
  • Heuer, B. (2010). Role of proline in plant response to drought and salinity. In A. Pessarakli (Eds.), Handbook of plant and crop stress (3rd ed., pp. 213–238). CRC Press.
  • Hosseinifard, M., Stefaniak, S., Javid, M. G., Soltani, E., Łukasz Wojtyla, L., & Garnczarska, M. (2022). Contribution of ­exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 23(9), 5186. https://doi.org/10.3390/ijms23095186
  • Ibrahim, A. M. M., Awad, A. E., Gendy, A. S. H., & Abdelkader, M. A. I. (2019). Effect of proline foliar spray on growth and productivity of sweet basil (Ocimum basilicum L.) plant under salinity stress conditions. Zagazig Journal of Agricultural Research, 46(6), 1877–1889. https://doi.org/10.21608/zjar.2019.51896
  • Ismail, E., & Halmy, M. (2018). Effect of proline and potassium humate on growth, yield and quality of broad bean under saline soil conditions. Journal of Plant Production, 9(12), 1141–1145. https://doi.org/10.21608/jpp.2018.36641
  • Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Ur Rehman, A., Shehzad, M., Mubeen, M., Shabbir, R., Javed, T., Branca, F., Ahmar, S., & Ismail, I. A. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: Physiological and nutritional implications. Agronomy, 11(9), 1826, 1–14. https://doi.org/10.3390/agronomy11091826
  • Jiang, D., Lu, B., Liu, L., Duan, W., Meng, Y., Li, J., Zhang, K., Sun, H., Zhang, Y., Dong, H., Bai, Z., & Li, C. (2021). Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biology, 21(1), 331. https://doi.org/10.1186/s12870-021-03082-7
  • Kheloufi, A., Chorfi, A., & Mansouri, L. M. (2016). The Mediterranean seawater: The impact on the germination and the seedlings emergence in three Acacia species. Journal of Biodiversity and Environmental Sciences, 8(6):, 238–249.
  • Li, Y., Cui, L., Yao, X., Ding, X., Pan, X., Zhang, M., Li, W., & Kang, X. (2017). Trade-off between leaf chlorophyll and betacyanins in Suaeda salsa in the Liaohe estuary wetland in northeast China. Journal of Plant Ecology, 11, 569–575. https://doi.org/10.1093/jpe/rtx025
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of Rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389–398. https://doi.org/10.1006/anbo.1996.0134
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Mahawar, L., Ramasamy, K. P., Suhel, M., Prasad, S. M., Živčák, M., Brestic, M., Rastogi, A., & Skalický, M. (2023). Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. Environmental Research, 232, 116292. https://doi.org/10.1016/j.envres.2023.116292
  • Mahawar, L., Živčák, M., Barboricova, M., Kovár, M., Filaček, A., Ferencova, J., Vysoká, D. M., & Brestič, M. (2024). Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. Plant Physiology and Biochemistry: PPB, 206, 108281. https://doi.org/10.1016/j.plaphy.2023.108281
  • Mansouri, M., & Kheloufi, A. (2017). Effect of diluted seawater on seed germination and seedling growth of three leguminous crops (pea, chickpea and common bean). Agriculture & Forestry, 63(2), 131–142.
  • Miranda, D., Fischer, G., Mewis, I., Rohn, S., & Ulrichs, C. (2014). Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.)Journal of Applied Botany and Food Quality, 87, 67–73. https://doi.org/10.5073/JABFQ.2014.087.010
  • Mirfattahi, Z., Karimi, S., & Roozban, M. R. (2017). Salinity induced changes in water relations, oxidative damage and morpho-physiological adaptations of pistachio genotypes in soilless culture. Acta Agriculturae Slovenica, 109(2), 291–302. https://doi.org/10.14720/aas.2017.109.2.12
  • Mittal, N., Thakur, S., Verma, H., & Kaur, A. (2018). Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. Global Journal of Bio-Science and Biotechnology, 7(1), 27–29.
  • Mohamed, A. A., Sameeh, M. Y., & El-Beltagi, H. S. (2023). Preparation of seaweed nanopowder particles using planetary ball milling and their effects on some secondary metabolites in Date Palm (Phoenix dactylifera L.) Seedlings. Life (Basel, Switzerland), 13(1), 39. https://doi.org/10.3390/life13010039
  • Molinari, H. B. C., Marur, C. J., Daros, E., de Campos, M. K. F., de Carvalho, J., Bespalhok, J. C., Pereira, L. F. P., & Vieira, L. G. E. (2007). Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum, 130(2), 218–229. https://doi.org/10.1111/j.1399-3054.2007.00909.x
  • Moran, R. (1982). Formulae for determination of chlorophllous pigments extracted with N, N-Dimetheylformamide. Plant Physiology, 69(6), 1376–1381. https://doi.org/10.1104/pp.69.6.1376
  • Naliwajski, M., & Skłodowska, M. (2021). The relationship ­between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells, 10(3), 609. https://doi.org/10.3390/cells10030609
  • Naseer, I., Javad, S., Iqbal, S., Shah, A. A., Alwutayd, K., & AbdElgawad, H. (2023). Deciphering the role of zinc ­oxide nanoparticles on physiochemical attributes of Zea mays exposed to saline conditions through modulation in antioxidant enzyme defensive system. South African Journal of Botany, 160, 469–482. https://doi.org/10.1016/j.sajb.2023.07.035
  • Nasrudin, N., Isnaeni, S., & Fahmi, P. (2022). The effect of high salt stress on the agronomic, chlorophyll content, and yield characteristics of several rice varieties. IOP Conference Series: Earth and Environmental Science, 995(1), 012028. https://doi.org/10.1088/1755-1315/995/1/012028
  • Oktay, M., Küfreviolu, I., Kocaçalişkan, I., & ŞAKlROLU, H. (1995). Polyphenol oxidase from Amasya Apple. Journal of Food Science, 60(3), 494–496. https://doi.org/10.1111/j.1365-2621.1995.tb09810.x
  • Okuma, E., Murakami, Y., Shimoishi, Y., Tada, M., & Murata, Y. (2008). Effects of exogenous application of proline and Betaine on the growth of tobacco cultured cells ­under saline conditions. Soil Science and Plant Nutrition, 50(8), 1301–1305. https://doi.org/10.1080/00380768.2004.10408608
  • Polle, A., Otter, T., & Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway Spruce Picea abies L. Plant Physiology, 106(1), 53–60. https://www.jstor.org/stable/4276023 https://doi.org/10.1104/pp.106.1.53
  • Priyanka, N., Geetha, N., Ghorbanpour, M., & Venkatachalam, P. (2019). Role of engineered zinc and copper oxide nanoparticles in promoting plant growth and yield: Present status and future prospects. Advances in Phytonanotechnology, 183–201. https://doi.org/10.1016/B978-0-12-815322-2.00007-9
  • Rai, S., Singh, P. K., Mankotia, S., Swain, J., & Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
  • Rossi, L., Fedenia, L. N., Sharifan, H., Ma, X., & Lombardini, L. (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry: PPB, 135, 160–166. https://doi.org/10.1016/j.plaphy.2018.12.005
  • Salama, Z., A. E. R., El-Beltagi, H. S., & El-Hariri, D.-M. (2009). Effect of Fe deficiency on antioxidant system in leaves of three flax cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1), 122–128. https://doi.org/10.15835/nbha3713107
  • Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 559876. https://doi.org/10.3389/fpls.2020.559876
  • Shao, J., Tang, W., Huang, K., Ding, C., Wang, H., Zhang, W., Li, R., Aamer, M., Muhammad Umair Hassan, M. U., Elnour, R. O., Hashem, M., Huang, G., & Qari, S. H. (2023). How does zinc improve salinity tolerance? Mechanisms and future prospects. Plants (Basel, Switzerland), 12(18), 3207. https://doi.org/10.3390/plants12183207
  • Shumilina, J., Kusnetsova, A., Tsarev, A., Van Rensburg, H. C. J., Medvedev, S., Demidchik, V., Ende, W. V. D., & Frolov, A. (2019). Glycation of plant proteins: Regulatory roles and interplay with sugar signalling? International Journal of Molecular Sciences, 20(9), 2366. https://doi.org/10.3390/ijms20092366
  • Sicher, R. C., & Barnaby, J. Y. (2012). Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiologia Plantarum, 144(3), 238–253. https://doi.org/10.1111/j.1399-3054.2011.01555.x
  • Signorelli, S., Coitino, E. L., Borsani, O., and Monza, J. (2014). Molecular mechanisms for the reaction between (OH)-O-center dot radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. Journal of Physical Chemistry B, 118, 37–47. https://doi.org/10.1021/jp407773u
  • Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (vol. 14). John Wiley & Sons.
  • Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., Srivastava, S., & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants (Basel, Switzerland), 10(12), 2556. https://doi.org/10.3390/plants10122556
  • Van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous Poly-amines. Plant Science, 151(1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • Walinga, I., Van Der Lee, J., Houba, V. J., Vanvark, W., & Novozamsky, I. (2013). Plant Analysis Manual. Springer-Science. 1–239.
  • Yasar, F., Ellialtioglu, S., & Yildiz, K. (2008). Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology, 55(6), 782–786. https://doi.org/10.1134/S1021443708060071
  • Zafar, S., Ashraf, M. Y., & Saleem, M. (2017). Shift in physiological and biochemical processes in wheat supplied with zinc and potassium under saline condition. Journal of Plant Nutrition, 41(1), 19–28. https://doi.org/10.1080/01904167.2017.1380825
  • Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences, 22(9), 4609. https://doi.org/10.3389/fpls.2022.1053699