174
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Enhancing irrigation water management based on ETo prediction using machine learning to mitigate climate change

, , , , ORCID Icon, & show all
Article: 2348697 | Received 08 Dec 2023, Accepted 24 Apr 2024, Published online: 09 May 2024

References

  • Agrawal, Y., Kumar, M., Ananthakrishnan, S., & Kumarapuram, G. (2022). Evapotranspiration modeling using different tree based ensembled machine learning algorithm. Water Resources Management, 36(3), 1–18. https://doi.org/10.1007/s11269-022-03067-7
  • Alhakeem, Z. M., Jebur, Y. M., Henedy, S. N., Imran, H., Bernardo, L. F., & Hussein, H. M. (2022). Prediction of ecofriendly concrete compressive strength using gradient boosting regression tree combined with GridSearchCV hyperparameter-optimization techniques. Materials, 15(21), 7432. https://doi.org/10.3390/ma15217432
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Aschonitis, V. G., Papamichail, D., Demertzi, K., Colombani, N., Mastrocicco, M., Ghirardini, A., Castaldelli, G., & Fano, E.-A. (2017). High-resolution global grids of revised Priestley–Taylor and Hargreaves–Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation. Earth System Science Data, 9(2), 615–638. https://doi.org/10.5194/essd-9-615-2017
  • Azzam, A., Zhang, W., Akhtar, F., Shaheen, Z., & Elbeltagi, A. (2022). Estimation of green and blue water evapotranspiration using machine learning algorithms with limited meteorological data: A case study in Amu Darya River Basin, Central Asia. Computers and Electronics in Agriculture, 202, 107403. https://doi.org/10.1016/j.compag.2022.107403
  • Bai, J., Chen, X., Dobermann, A., Yang, H., Cassman, K. G., & Zhang, F. (2010). Evaluation of NASA satellite-and model-derived weather data for simulation of maize yield potential in China. Agronomy Journal, 102(1), 9–16. https://doi.org/10.2134/agronj2009.0085
  • Bashir, R. N., Khan, F. A., Khan, A. A., Tausif, M., Abbas, M. Z., Shahid, M. M. A., & Khan, N. (2023). Intelligent optimization of Reference Evapotranspiration (ETo) for precision irrigation. Journal of Computational Science, 69, 102025. https://doi.org/10.1016/j.jocs.2023.102025
  • Blaney, H. F., & Criddle, W. D. (1962). Determining consumptive use and irrigation water requirements (No. 1275). US Department of Agriculture.
  • Brahma, B., & Wadhvani, R. (2020). Solar irradiance forecasting based on deep learning methodologies and multi-site data. Symmetry, 12(11), 1830. https://doi.org/10.3390/sym12111830
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (pp. 785–794.).
  • Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 591, 125286. https://doi.org/10.1016/j.jhydrol.2020.125286
  • Chouaib, E. H., Salwa, B., Saïd, K., & Abdelghani, C. (2022). Early estimation of daily reference evapotranspiration using machine learning techniques for efficient management of irrigation water. Journal of Physics: Conference Series, 2224(1), 012006. https://doi.org/10.1088/1742-6596/2224/1/012006
  • Danielescu, S. (2022). SWIB: An online model to estimate daily crop water stress, irrigation needs, and soil water budget. Groundwater, 61(3), 296–300. https://doi.org/10.1111/gwat.13278
  • de Sousa Lima, J. R., Antonino, A. C. D., de Souza, E. S., Hammecker, C., Montenegro, S. M. G. L., & de Oliveira Lira, C. A. B. (2013). Calibration of Hargreaves-Samani equation for estimating reference evapotranspiration in sub-humid region of Brazil. Journal of Water Resource and Protection, 5(12A), 1–5.
  • Djaman, K., O’Neill, M., Diop, L., Bodian, A., Allen, S., Koudahe, K., & Lombard, K. (2019). Evaluation of the Penman-Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate. Theoretical and Applied Climatology, 137(1-2), 729–743. https://doi.org/10.1007/s00704-018-2624-0
  • dos Santos Farias, D. B., Althoff, D., Rodrigues, L. N., & Filgueiras, R. (2020). Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theoretical and Applied Climatology, 142(3-4), 1481–1492. https://doi.org/10.1007/s00704-020-03380-4
  • Farooque, A. A., Afzaal, H., Abbas, F., Bos, M., Maqsood, J., Wang, X., & Hussain, N. (2022). Forecasting daily evapotranspiration using artificial neural networks for sustainable irrigation scheduling. Irrigation Science, 40(1), 55–69. https://doi.org/10.1007/s00271-021-00751-1
  • Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM–A new approach. Journal of Hydrology, 572, 556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  • Fouad, E., Elnouby, M., & Saied, M. (2022). Variability and trend analysis of temperature in Egypt. Egyptian Journal of Physics, 50(1), 47–58.
  • Granata, F. (2019). Evapotranspiration evaluation models based on machine learning algorithms: A comparative study. Agricultural Water Management, 217, 303–315. https://doi.org/10.1016/j.agwat.2019.03.015
  • Granata, F., & Di Nunno, F. (2021). Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agricultural Water Management, 255, 107040. https://doi.org/10.1016/j.agwat.2021.107040
  • Gul, S., Ren, J., Wang, K., & Guo, X. (2023). Estimation of reference evapotranspiration via machine learning algorithms in humid and semiarid environments in Khyber Pakhtunkhwa, Pakistan. International Journal of Environmental Science and Technology, 20(5), 5091–5108. https://doi.org/10.1007/s13762-022-04334-1
  • Hafeez, M., Chatha, Z. A., Khan, A. A., Bakhsh, A., Basit, A. b. dul., & Tahira, F. (2020). Estimating reference evapotranspiration by Hargreaves and Blaney-Criddle methods in humid subtropical conditions. Current Research in Agricultural Sciences, 7(1), 15–22. https://doi.org/10.18488/journal.68.2020.71.15.22
  • Hamed, M. M., Khan, N., Muhammad, M. K. I., & Shahid, S. (2022). Ranking of empirical evapotranspiration models in different climate Zones of Pakistan. Land, 11(12), 2168. https://doi.org/10.3390/land11122168
  • Hamed, K. H., & Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1-4), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
  • Hargreaves, G. H., & Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 129(1), 53–63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99.
  • Heydari, M. M., Tajamoli, A., Ghoreishi, S. H., Darbe-Esfahani, M. K., & Gilasi, H. (2015). Evaluation and calibration of Blaney–Criddle equation for estimating reference evapotranspiration in semiarid and arid regions. Environmental Earth Sciences, 74(5), 4053–4063. https://doi.org/10.1007/s12665-014-3809-1
  • Hu, Z., Bashir, R. N., Rehman, A. U., Iqbal, S. I., Shahid, M. M. A., & Xu, T. (2022). Machine learning based prediction of reference evapotranspiration (et 0) using IOT. IEEE Access. 10, 70526–70540. https://doi.org/10.1109/ACCESS.2022.3187528
  • Jain, S. K., & Gupta, A. K. (2022). Application of random forest regression with hyper-parameters tuning to estimate reference evapotranspiration. International Journal of Advanced Computer Science and Applications, 13(5), 742–750. https://doi.org/10.14569/IJACSA.2022.0130585
  • Kar, S., Purbey, V. K., Suradhaniwar, S., Korbu, L. B., Kholová, J., Durbha, S. S., Adinarayana, J., & Vadez, V. (2021). An ensemble machine learning approach for determination of the optimum sampling time for evapotranspiration assessment from high-throughput phenotyping data. Computers and Electronics in Agriculture, 182, 105992. https://doi.org/10.1016/j.compag.2021.105992
  • Khan, S. I., & Hoque, A. S. M. L. (2020). SICE: An improved missing data imputation technique. Journal of Big Data, 7(1), 37. https://doi.org/10.1186/s40537-020-00313-w
  • Khan, A. A., Nauman, M. A., Bashir, R. N., Jahangir, R., ALRoobaea, R., Binmahfoudh, A., Alsafyani, M., & Wechtaisong, C. (2022). Context aware evapotranspiration (ETs) for saline soils reclamation. IEEE Access. 10, 110050–110063. https://doi.org/10.1109/ACCESS.2022.3206009
  • Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science, 29(1), 11–25. https://doi.org/10.1007/s00271-010-0230-8
  • Lornezhad, E., Ebrahimi, H., & Rabieifar, H. R. (2023). Analysis of precipitation and drought trends by a modified Mann–Kendall method: A case study of Lorestan province, Iran. Water Supply, 23(4), 1557–1570. https://doi.org/10.2166/ws.2023.068
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3), 245–259. https://doi.org/10.2307/1907187
  • Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(2), 140–147. https://doi.org/10.38094/jastt1457
  • Meshram, V., Patil, K., Meshram, V., Hanchate, D., & Ramkteke, S. D. (2021). Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences, 1, 100010. https://doi.org/10.1016/j.ailsci.2021.100010
  • Mobilia, M., & Longobardi, A. (2021). Prediction of potential and actual evapotranspiration fluxes using six meteorological data-based approaches for a range of climate and land cover types. ISPRS International Journal of Geo-Information, 10(3), 192. https://doi.org/10.3390/ijgi10030192
  • Mokari, E., DuBois, D., Samani, Z., Mohebzadeh, H., & Djaman, K. (2022). Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico. Theoretical and Applied Climatology, 147(1-2), 575–587. https://doi.org/10.1007/s00704-021-03855-y
  • Nauman, M. A., Saeed, M., Saidani, O., Javed, T., Almuqren, L., Bashir, R. N., & Jahangir, R. (2023). IoT and ensemble long-short-term-memory-based evapotranspiration forecasting for Riyadh. Sensors, 23(17), 7583. https://doi.org/10.3390/s23177583
  • Ndulue, E., & Ranjan, R. S. (2021). Performance of the FAO Penman-Monteith equation under limiting conditions and fourteen reference evapotranspiration models in southern Manitoba. Theoretical and Applied Climatology, 143(3–4), 1285–1298. https://doi.org/10.1007/s00704-020-03505-9
  • Negm, A., Jabro, J., & Provenzano, G. (2017). Assessing the suitability of American National Aeronautics and Space Administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agricultural and Forest Meteorology, 244-245, 111–121. https://doi.org/10.1016/j.agrformet.2017.05.022
  • Ramachandra, J. T., Veerappa, S. R. N., & Udupi, D. A. (2022). Assessment of spatiotemporal variability and trend analysis of reference crop evapotranspiration for the southern region of Peninsular India. Environmental Science and Pollution Research International, 29(28), 41953–41970. https://doi.org/10.1007/s11356-021-15958-0
  • Ravindran, S. M., Bhaskaran, S. K. M., & Ambat, S. K. N. (2021). A deep neural network architecture to model reference evapotranspiration using a single input meteorological parameter. Environmental Processes, 8(4), 1567–1599. https://doi.org/10.1007/s40710-021-00543-x
  • Raza, A., Shoaib, M., Faiz, M. A., Baig, F., Khan, M. M., Ullah, M. K., & Zubair, M. (2020). Comparative assessment of reference evapotranspiration estimation using conventional method and machine learning algorithms in four climatic regions. Pure and Applied Geophysics, 177(9), 4479–4508. https://doi.org/10.1007/s00024-020-02473-5
  • Rezaiy, R., & Shabri, A. (2023). Drought forecasting using W-ARIMA model with standardized precipitation index. Journal of Water and Climate Change, 14(9), 3345–3367. https://doi.org/10.2166/wcc.2023.431
  • Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263–277. https://doi.org/10.1007/s00703-017-0564-3
  • Sain, S. R. (1996). The nature of statistical learning theory.
  • Schomberg, H. H., White, K. E., Thompson, A. I., Bagley, G. A., Burke, A., Garst, G., Bybee-Finley, K. A., & Mirsky, S. B. (2023). Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems. Agricultural Water Management, 278, 108167. https://doi.org/10.1016/j.agwat.2023.108167
  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman–Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97(5), 635–644. https://doi.org/10.1016/j.agwat.2009.12.001
  • Sharma, V., & Irmak, S. (2012). Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part I. Precipitation and reference evapotranspiration. Transactions of the ASABE, 55(3), 907–921.
  • Shi, X., Wong, Y. D., Li, M. Z. F., Palanisamy, C., & Chai, C. (2019). A feature learning approach based on XGBoost for driving assessment and risk prediction. Accident; Analysis and Prevention, 129, 170–179. https://doi.org/10.1016/j.aap.2019.05.005
  • Singh, S., & Haider, M. T. U. (2022). Pre-processing of datasets with best feature selection and outlier removal techniques for a fair and robust model of software defect prediction.
  • Soomro, A. A., Mokhtar, A. A., Salilew, W. M., Abdul Karim, Z. A., Abbasi, A., Lashari, N., & Jameel, S. M. (2022). Machine learning approach to predict the performance of a stratified thermal energy storage tank at a District Cooling Plant Using Sensor Data. Sensors, 22(19), 7687. https://doi.org/10.3390/s22197687
  • Tabari, H. (2010). Evaluation of reference crop evapotranspiration equations in various climates. Water Resources Management, 24(10), 2311–2337. https://doi.org/10.1007/s11269-009-9553-8
  • Tausif, M., Dilshad, S., Umer, Q., Iqbal, M. W., Latif, Z., Lee, C., & Bashir, R. N. (2023). Ensemble learning-based estimation of reference evapotranspiration (ETo). Internet of Things, 24, 100973. https://doi.org/10.1016/j.iot.2023.100973
  • Thongkao, S., Ditthakit, P., Pinthong, S., Salaeh, N., Elkhrachy, I., Linh, N. T. T., & Pham, Q. B. (2022). Estimating FAO Blaney-Criddle b-factor using soft computing models. Atmosphere, 13(10), 1536. https://doi.org/10.3390/atmos13101536
  • Torrizo, L. F., & Africa, A. D. M, De La Salle University, Manila. (2019). Next-hour electrical load forecasting using an artificial neural network: Applicability in the Philippines. International Journal of Advanced Trends in Computer Science and Engineering, 8(3), 831–835. https://doi.org/10.30534/ijatcse/2019/77832019
  • van der Aalst, W. M. (2001). Exterminating the dynamic change bug: A concrete approach to support workflow change. Information Systems Frontiers, 3(3), 297–317. https://doi.org/10.1023/A:1011409408711
  • Wen, X., Si, J., He, Z., Wu, J., Shao, H., & Yu, H. (2015). Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resources Management, 29(9), 3195–3209. https://doi.org/10.1007/s11269-015-0990-2
  • White, J. W., Hoogenboom, G., Stackhouse, P. W., Jr., & Hoell, J. M. (2008). Evaluation of NASA satellite-and assimilation model-derived long-term daily temperature data over the continental US. Agricultural and Forest Meteorology, 148(10), 1574–1584. https://doi.org/10.1016/j.agrformet.2008.05.017
  • Wu, L., & Fan, J. (2019). Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLoS One. 14(5), e0217520. https://doi.org/10.1371/journal.pone.0217520
  • Xie, W., Nie, W., Saffari, P., Robledo, L. F., Descote, P. Y., & Jian, W. (2021). Landslide hazard assessment based on Bayesian optimization–support vector machine in Nanping City, China. Natural Hazards, 109(1), 931–948. https://doi.org/10.1007/s11069-021-04862-y
  • Yao, K. M. A., Kola, E., Morenikeji, W., & Filho, W. L. (2023). Time series analysis of temperature and rainfall in the Savannah region in Togo, West Africa. Water, 15(9), 1656. https://doi.org/10.3390/w15091656
  • Yassen, A. N., Nam, W. H., & Hong, E. M. (2020). Impact of climate change on reference evapotranspiration in Egypt. Catena, 194, 104711. https://doi.org/10.1016/j.catena.2020.104711