527
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The interboundary properties and kinematics of N719 dye with titania photoanode framework and spectral responses with different electrolytes

ORCID Icon, & | (Reviewing editor)
Article: 1498146 | Received 17 Dec 2017, Accepted 02 Jul 2018, Published online: 26 Jul 2018

References

  • Abodunrin, T. J., Obafemi, O., Boyo, A. O., Adebayo, T., & Jimoh, R. (2015). The effect of electrolyte on dye sensitized solar cells using natural dye from mango (M. indica L.) Leaf as Sensitizer. AMPC, 5, 205–213.
  • Abodunrin, T. J., Uhuegbu, C. C., & Olugbuyiro, J. A. O. (2015). Phytochemical analysis of leaf-extracts from eight tropical trees: Prospects for environmentally-friendly dye compounds for smart windows. IJSER, 6(3), 682.
  • Choi, W. Y., Termin., A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photo-reactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98, 13669–13679. doi:10.1021/j100102a038
  • Hara, K., Dan-Oh, Y., Kasada, C., Ohga, Y., Shinpo, A., Suga, S., … Arakawa, H. (2004). Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir, 20, 4205–4210.
  • Hara, K., Kurashige, M., Dan-Oh, Y., Kasada, C., Shinpo, A., Suga, S., … Arakawa, H. (2003). Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye sensitized solar cells. New Journal of Chemistry, 27, 783–785.
  • Hemmatzadeh, R., & Jamali, A. (2015). Enhancing the optical absorption of anthocyanins for dye-sensitized solar cells. JRSE, 7(1), Article I013120.
  • Horiuchi, T., Miura, H., Sumioka, K., & Uchida, S. (2004). High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 126(39), 12218–12219.
  • Jafarzadeh, S., Shafiei, A., Ebadi, M., & Abdoli, M. (2010). Batch separation of Styrene/Ethyl Benzene/Water dispersions. IJCHE, 7(4), 22-28.
  • Lai, R. Y., Kong, X., Jenekhe, S. A., & Bard, A. J. (2003). Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor−acceptor molecule. Journal of the American Chemical Society, 125, 12631–12639.
  • Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., & New, L. Z. (2007). Triphenylamine-based organic dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry C, 111, 4465–4472.
  • Matsui, M., Hashimoto, Y., Funabiki, K., Jin, J., Yoshida, T., & Minoura, H. (2005). Application of nearinfrared absorbing heptamethine cyanine dyes as sensitizers for zinc oxide solar cell. Synthetic Metals, 148, 147–153.
  • Milenkovi´C, S. M., Zvezdanovi´C, J. B., Andjelkovi´C, T. D., & Markovi´C, D. Z. (2012). The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Advance Technologies, 1(1), 16–24.
  • Naji Al Dahoudi, N., Qifeng, Z., & Guozhong, C. (2013). Low-temperature processing of titanium oxide nanoparticles photoanodes for Dye-sensitized solar cells. Journal of Renewable Energy, 2013, 1–8.
  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humpbry-Baker, R., Miiller, E., Liska, P., … Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2ʹ-bipyridyl-4,4ʹ-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl−, Br-, I−, CN−, and SCN−) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115, 6382–6390.
  • Shahid, M., Ul-Islam, S., & Mohammad, F. (2013). Recent advancements in natural dye applications: A review. Journal of Cleaner Production, 53, 310–331.
  • Shi, J., Peng, S., Pei, J., Liang, Y., Cheng, F., & Chen, J. (2009). Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes. ACS Applied Materials & Interfaces, 1(4), 944–950.
  • Tian, H. N., Yang, X. C., & Chen, R. K. (2007). Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications, 36, 3741–3743.
  • Tsai, Y.-L., Chang, -C.-C., Kang, -C.-C., & Chang, T.-C. (2007). Effect of different electronic properties on 9-aryl-substituted BMVC derivatives for new fluorescence probes. Journal of Luminescence, 127, 41–47.
  • Varadharajan, V., Janarthanan, U. K., & Krishnamurthy, V. (2016). Physicochemical, phytochemical screening and Profiling of secondary metabolites of Annona Squamosa leaf extract. Journal of Pharmacognosy and Phytochemistry, 5(2), 200–203.
  • Wang, Z. S., Yanagida, M., Sayama, K., & Sugihara, H. (2006). Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency. Chemistry of Materials, 18(12), 2912–2916.
  • Wold. (1993). Photocatalytic properties of TiO2. Chemistry of Materials, 5, 280–283.
  • Zhao, D., Peng, T., Lu, L., Cai, P., Jiang, P., & Bian, Z. (2008). Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. The Journal of Physical Chemistry C, 112(22), 8486–8494.