146
Views
0
CrossRef citations to date
0
Altmetric
Article

Several Numerical Simulation Methods for the Time-Dependent Schrödinger Equation

&

References

  • Avdelas, G., T. E. Simos, and J. Vigo-Aguiar. 2000. An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation and related periodic initial-value problems. Comput. Phys. Commun. 131(1–2): 52–67. DOI: 10.1016/S0010-4655(00)00080-1.
  • Bao, W., S. Jin, and P. A. Markowich. 2002. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2): 487–524. DOI: 10.1006/jcph.2001.6956.
  • Cao, Y. H., and L. H. Kuo. 2021. Hybrid method of space-time and Houbolt methods for solving linear time-dependent problems. Eng. Anal. Bound. Elem. 128: 58–65. DOI: 10.1016/j.enganabound.2021.03.021.
  • Cao, Y. H., C. S. Chen, and H. Zheng. 2020. Space-time polynomial particular solutions method for solving time-dependent problems. Numer. Heat Transfer Part B. 77(3): 181–94. DOI: 10.1080/10407790.2019.1693199.
  • Carlson, R. E., and T. A. Foley. 1991. The parameter R2 in multiquadric interpolation. Comput. Math. Appl. 21(9): 29–42. DOI: 10.1016/0898-1221(91)90123-L.
  • Chan, H. F., and C. M. Fan. 2013. The local radial basis function collocation method for solving two-dimensional inverse Cauchy problems. Numer. Heat Transfer Part B. 63(4): 284–303. DOI: 10.1080/10407790.2013.772004.
  • Chi, G. S., G. S. Li, C. L. Sun, and X. Z. Jia. 2017. Numerical solution to the space-time fractional diffusion equation and inversion for the space-dependent diffusion coefficient. J. Comput. Theor. Transp. 46(2): 122–46. DOI: 10.1080/23324309.2016.1263667.
  • Dangal, T., C. S. Chen, and J. Lin. 2017. Polynomial particular solutions for solving elliptic partial differential equations. Comput. Math. Appl. 73(1): 60–70. DOI: 10.1016/j.camwa.2016.10.024.
  • Dorofeyev, P. A. 1985. On some properties of the generalized gradient method. USSR Comput. Math. Math. Phys. 25(1): 117–22. DOI: 10.1016/0041-5553(85)90051-5.
  • Hafez, K., and M. Kobeissi. 1988. A new variable step method for the numerical integration of the one-dimensional Schrödinger equation. J. Comput. Phys. 77(2): 501–12. DOI: 10.1016/0021-9991(88)90180-5.
  • Hwang, J. T., and J. R. R. A. Martins. 2018. A computational architecture for coupling heterogeneous numerical models and computing coupled derivatives. ACM Trans. Math. Softw. 44(4): 1–39. DOI: 10.1145/3182393.
  • Kansa, E. J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9): 147–61. DOI: 10.1016/0898-1221(90)90271-K.
  • Kieri, E., G. Kreiss, and O. Runborg. 2015. Coupling of Gaussian beam and finite difference solvers for semiclassical Schrödinger equations. Adv. Appl. Math. Mech. 7(6): 687–714. DOI: 10.4208/aamm.2013.m411.
  • Lai, S. J., B. Z. Wang, and Y. Duan. 2008. Meshless radial basis function method for transient electromagnetic computations. IEEE Trans. Magn. 44(10): 2288–95. DOI: 10.1109/TMAG.2008.2001796.
  • Libersky, L. D., A. G. Petschek, T. C. Carney, J. R. Hipp, and F. A. Allahdadi. 1993. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109(1): 67–75. DOI: 10.1006/jcph.1993.1199.
  • Lin, J., C. S. Chen, F. Wang, and T. Dangal. 2017. Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. Appl. Math. Model. 49: 452–69. DOI: 10.1016/j.apm.2017.05.012.
  • Mehdi, M., and S. Ali. 2007. A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Comput. Math. Appl. 54: 136–46. DOI: 10.1016/j.camwa.2007.01.038.
  • Mohammed, H., N. Ahmed, and C. Abdellatif. 2016. Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations. Eng. Anal. Bound. Elem. 67: 152–63. DOI: 10.1016/j.enganabound.2016.03.009.
  • Raptis, A. D., and J. R. Cash. 1985. A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun 36(2): 113–9. DOI: 10.1016/0010-4655(85)90117-1.
  • Sagar, B., and S. Saha Ray. 2021. Numerical soliton solutions of fractional Newell–Whitehead–Segel equation in binary fluid mixtures. Comp. Appl. Math. 40(8): 290. DOI: 10.1007/s40314-021-01676-3.
  • Sagar, B., and S. Saha Ray. 2023. A localized meshfree technique for solving fractional Benjamin–Ono equation describing long internal waves in deep stratified fluids. Commun. Nonlinear Sci. Numer. Simul. 123: 107287. DOI: 10.1016/j.cnsns.2023.107287.
  • Saha Ray, S., and B. Sagar. 2022. Numerical solution of fractional Dullin–Gottwald–Holm equation for solitary shallow water waves. Numerical Methods Partial. 38(5): 1556–69. DOI: 10.1002/num.22868.
  • Sturzu, I. 2001. Explicit Euler method for solving the time-dependent Schrödinger equation. Phys. Rev. A. 64(5): 4101. DOI: 10.1103/PhysRevA.64.054101.
  • Subaşi, M. 2002. On the finite-difference schemes for the numerical solution of two dimensional Schrödinger equation. Numerical Method. Partial. 18(6): 752–8. DOI: 10.1016/j.amc.2004.09.039. 10.1002/num.10029
  • Triggiani, R., and P. F. Yao. 1999. Inverse estimates for Schrödinger equations with variable coefficients. Control Cybern. 28: 627–64. DOI: 10.1016/j.jmaa.2015.02.079.
  • Twizell, E. H., A. G. Bratsos, and J. C. Newby. 1997. A finite-difference method for solving the cubic Schrödinger equation. Math. Comput. Simul. 43(1): 67–75. DOI: 10.1016/S0378-4754(96)00056-0.
  • Wang, L. L., and M. Li. 2022. Galerkin finite element method for damped nonlinear Schrödinger equation. Appl. Numer. Math. 178: 216–47. DOI: 10.1016/j.apnum.2022.03.018.
  • Yan, Z. 2003. Generalized method and its application in the higher-order nonlinear Schrödinger equation in nonlinear optical fibres. Chaos Solitons Fractal. 16(5): 759–66. DOI: 10.1016/S0960-0779(02)00435-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.