358
Views
1
CrossRef citations to date
0
Altmetric
Article

Energy-Dependent, Self-Adaptive Mesh h(p)-Refinement of a Constraint-Based Continuous Bubnov-Galerkin Isogeometric Analysis Spatial Discretization of the Multi-Group Neutron Diffusion Equation with Dual-Weighted Residual Error Measures

, &

References

  • Ainsworth, M., and J. T. Oden. 1997. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142 (1–2):1–88. doi: 10.1016/S0045-7825(96)01107-3.
  • Ainsworth, M., and J. T. Oden. 2000. A posteriori error estimation in finite element analysis. Pure and applied mathematics. John Wiley & Sons, Inc. doi: 10.1002/9781118032824.
  • Akhras, H. A., T. Elguedj, A. Gravouil, and M. Rochette. 2017. Towards an automatic isogeometric analysis suitable trivariate models generation - Application to geometric parametric analysis. Comput. Methods Appl. Mech. Eng. 316:623–45. doi: 10.1016/j.cma.2016.09.030.
  • Argonne National Laboratory. 1977. Argonne code center: Benchmark problem book. Report No. ANL-7416. Argonne National Laboratory.
  • Babuška, I., and B. Q. Guo. 1992. The h, p, and h – p version of the finite element method; basis theory and applications. Adv. Eng. Softw. 15 (3–4):159–74. doi: 10.1016/0965-9978(92)90097-Y.
  • Balay, S., S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, et al. 2018. PETSc users manual: Revision 3.9. Report No. ANL-95/11 Rev. 3.9. Argonne National Laboratory.
  • Bangerth, W., and R. Rannacher. 2003. Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zurich. Springer. doi: 10.1007/978-3-0348-7605-6.
  • Bazilevs, Y., V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg. 2010. Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199 (5–8):229–63. doi: 10.1016/j.cma.2009.02.036.
  • Becker, E. B., G. F. Carey, and J. T. Oden. 1981. Finite elements: An introduction. Prentice-Hall Inc. ISBN 10: 0133170578/ISBN 13: 9780133170573.
  • Boltzmann, L. E. 1872. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte Der Mathematisch-Naturwissenschaftlichen Classe Der Kaiserlichen Akademie Der Wissenschaften 66:275–370. doi: 10.1007/978-3-322-84986-1_3.
  • Bonito, A., R. A. Devore, and R. H. Nochetto. 2013. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients. SIAM J. Numer. Anal. 51 (6):3106–34. doi: 10.1137/130905757.
  • Buffa, A., G. Sangalli, and R. Vázquez. 2014. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretisations. Comput. Phys. 257:1291–320. doi: 10.1016/j.jcp.2013.08.015.
  • Ceze, M., and K. J. Fidkowski. 2013. Anisotropic hp-adaptation framework for functional prediction. AIAA J. 51 (2):492–509. doi: 10.2514/1.J051845.
  • Coox, L., F. Greco, O. Atak, D. Vandepitte, and W. Desmet. 2017. A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces. Comput. Methods Appl. Mech. Eng. 316:235–60. doi: 10.1016/j.cma.2016.06.022.
  • Cottrell, J. A., T. J. R. Hughes, and Y. Bazilevs. 2009. Isogeometric analysis: Toward integration of CAD and FEA. John Wiley & Sons, Inc. ISBN: 978-0-470-74873-2.
  • Cottrell, J., T. Hughes, and A. Reali. 2007. Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196 (41–44):4160–83. doi: 10.1016/j.cma.2007.04.007.
  • Cox, M. G. 1972. The numerical evaluations of B-splines. IMA J. Appl. Math. 10 (2):134–49. doi: 10.1093/imamat/10.2.134.
  • Cummins, W. E., and R. Matzie. 2018. Design evolution of PWRs: Shippingport to generation III+. Prog. Nucl. Energy 102:9–37. doi: 10.1016/j.pnucene.2017.08.008.
  • de Boor, C. 1972. On calculating with B-splines. J. Approximation Theory 6 (1):50–62. doi: 10.1016/0021-9045(72)90080-9.
  • Demkowicz, L. 2004. Projection based interpolation. Report No. ICES 04-03. University of Texas at Austin, Austin.
  • Demkowicz, L. 2007. Computing with hp-adaptive finite elements: One and two dimensional elliptic and maxwell problems. Vol. 1 of Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC. doi: 10.1201/9781420011685.
  • Demkowicz, L., J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek. 2008. Computing with hp-adaptive finite elements: three dimensional elliptic and maxwell problems with applications. Vol. 2 of Chapman & Hall/CRC Applied mathematics and nonlinear science series. Chapman & Hall/CRC. doi: 10.1201/9781420011692.
  • Demkowicz, L., P. Monk, L. Vardapetyan, and W. Rachowicz. 2000. De Rhamm diagram for hp finite element spaces. Math. Comput. Appl. 39 (7–8):29–38. doi: 10.1016/S0898-1221(00)00062-6.
  • Demkowicz, L., W. Rachowicz, and P. Devloo. 2002. A fully automatic hp-adaptivity. J. Sci. Comput. 17 (1–4):117–42. doi: 10.1023/A:1015192312705.
  • Donea, J., and A. Huerta. 2003. Finite element methods for flow problems. John Wiley & Sons, Inc. doi: 10.1002/0470013826.
  • Ern, A., and J.-L. Guermond. 2004. Theory and practice of finite elements. Vol. 159 of applied mathematical sciences. Springer. doi: 10.1007/978-1-4757-4355-5.
  • Farrell, P. E., and J. R. Maddison. 2011. Conservative interpolation between volume meshes by local Galerkin projection. Comput. Methods Appl. Mech. Eng. 200 (1–4):89–100. doi: 10.1016/j.cma.2010.07.015.
  • Finlayson, B. A. 1972. The method of weighted residuals and variational principles with application in fluid mechanics, heat and mass transfer. Vol. 87 of mathematics in science and engineering. Academic Press. doi: 10.1137/1.9781611973242.
  • Gahalaut, K. P. S., J. K. Kraus, and S. K. Tomar. 2013. Multigrid methods for isogeometric discretisation. Comput. Methods Appl. Mech. Eng. 253 (100):413–25. doi: 10.1016/j.cma.2012.08.015.
  • Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandié. 2009. MOOSE: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239 (10):1768–78. doi: 10.1016/j.nucengdes.2009.05.021.
  • Goffin, M. A., C. M. J. Baker, A. G. Buchan, C. C. Pain, M. D. Eaton, and P. N. Smith. 2013. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes. Comput. Phys. 242:726–52. doi: 10.1016/j.jcp.2012.12.035.
  • Guo, B., and I. Babuška. 1986a. The h – p version of the finite element method, part 1: The basic approximation results. Comput. Mech. 1 (1):21–41. doi: 10.1007/BF00298636.
  • Guo, B., and I. Babuška. 1986b. The h – p version of the finite element method, part 2: General results and applications. Comput. Mech. 1 (3):203–20. doi: 10.1007/BF00272624.
  • Hall, S. K., M. D. Eaton, and M. M. R. Williams. 2012. The application of isogeometric analysis to the neutron diffusion equation for a pincell problem with an analytic benchmark. Ann. Nucl. Energy 49:160–9. doi: 10.1016/j.anucene.2012.05.030.
  • Hansen, K. F., and C. M. Kang. 1973. Finite element methods for reactor physics analysis. Adv. Nucl. Sci. Eng. 51 (4):456–95. doi: 10.13182/NSE73-A23278.
  • Hartmann, R. 2007. Adjoint consistency analysis of discontinuous galerkin discretizations. SIAM J. Numer. Anal. 45 (6):2671–96. doi: 10.1137/060665117.
  • Hébert, A. 1985. Application of the hermite method for finite element reactor calculations. Nucl. Sci. Eng. 91 (1):34–58. doi: 10.13182/NSE85-A17127.
  • Hébert, A. 2019. A user guide for trivac version-4. Report No. IGE-293. Ecole Polytechnique de Montréal - Institut de Génie Nucléaire.
  • Henson, V. E., and U. M. Yang. 2002. BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41 (1):155–77. doi: 10.1016/S0168-9274(01)00115-5.
  • Hughes, T. J. R., J. A. Cottrell, and Y. Bazilevs. 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (39–41):4135–95. doi: 10.1016/j.cma.2004.10.008.
  • Jiao, X., and M. T. Heath. 2004. Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Numer. Methods Eng. 61 (14):2402–27. doi: 10.1002/nme.1147.
  • Kagan, P., A. Fischer, and P. Z. Bar-Yoseph. 2003. Mechanically based models: Adaptive refinement for B-spline finite element. Numer. Methods Eng. 57 (8):1145–75. doi: 10.1002/nme.717.
  • Lathouwers, D. 2011a. Goal-oriented spatial adaptivity for the SN equations on unstructured triangular meshes. Ann. Nucl. Energy 38 (6):1373–81. doi: 10.1016/j.anucene.2011.01.038.
  • Lathouwers, D. 2011b. Spatially adaptive eigenvalue estimation for the SN equations on unstructured triangular meshes. Ann. Nucl. Energy 38 (9):1867–76. doi: 10.1016/j.anucene.2011.05.013.
  • Latimer, C., J. Kópházi, M. D. Eaton, and R. G. McClarren. 2020. A geometry conforming isogeometric method for the self-adjoint angular flux (SAAF) form of the neutron transport equation with a discrete ordinate (S N) angular discretisation. Ann. Nucl. Energy 136:107049. doi: 10.1016/j.anucene.2019.107049.
  • Lewis, E. E., and W. F. Miller. Jr. 1984. Computational methods of neutron transport. John Wiley & Sons, Inc. ISBN-10‏: ‎0471092452; ISBN-13‏: ‎978-0471092452.
  • Martin, W. R., and J. J. Duderstadt. 1977. Finite element solutions of the neutron transport equation with applications to strong heterogeneities. Nucl. Sci. Eng. 62 (3):371–90. doi: 10.13182/NSE77-A26979.
  • Martineau, R., D. Andrs, R. Carlsen, D. Gaston, J. Hansel, F. Kong, A. Lindsay, C. Permann, A. Slaughter, E. Merzari, et al. 2020. Multiphysics for nuclear energy applications using a cohesive computational framework. Nucl. Eng. Des. 367:110751. doi: 10.1016/j.nucengdes.2020.110751.
  • Melenk, J. M., A. Parsania, and S. Sauter. 2013. General DG-methods for highly indefinite helmholtz problems. J. Sci. Comput. 57 (3):536–81. doi: 10.1007/s10915-013-9726-8.
  • Metcalf, M., J. Reid, and M. Cohen. 2011. Modern fortran explained. Numerical Mathematics and Scientific Computation. Oxford University Press. doi: 10.1093/oso/9780198811893.001.0001.
  • Mitchell, W. F., and M. A. McClain. 2014. A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Trans. Math. Softw. 41 (1):1–39. doi: 10.1145/2629459.
  • Mylonakis, A. G., M. Varvayanni, N. Catsaros, P. Savva, and D. G. E. Grigoriadis. 2014. Multi-physics and multi-scale methods used in nuclear reactor analysis. Ann. Nucl. Energy 72:104–19. doi: 10.1016/j.anucene.2014.05.002.
  • Nitsche, J. A. 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilrämen, die keinen Randbedingungen unterworfen sind. In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg. Vol. 36, pp. 9–15. Springer. doi: 10.1007/BF02995904
  • Oden, J. T., and J. N. Reddy. 2011. An introduction to the mathematical theory of finite elements. Dover Publications. doi: 10.1002/nme.1620110715.
  • Owens, A. R. 2017. Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete oridnate angular discretisation. PhD thesis, Imperial College London.
  • Owens, A. R., J. A. Welch, J. Kópházi, and M. D. Eaton. 2017. An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation. Comput. Methods Appl. Mech. Eng. 318:215–41. doi: 10.1016/j.cma.2017.01.036.
  • Owens, A. R., J. Kópházi, and M. D. Eaton. 2017. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators. Comput. Phys. 335:352–86. doi: 10.1016/j.jcp.2017.01.035.
  • Park, H. 2006. Coupled space-angle adaptivity and goal-oriented error control for radiation transport calculations. PhD thesis, Georgia Institute of Technology. http://hdl.handle.net/1853/13944
  • Piegl, L., and W. Tiller. 1997. The NURBS book: Monographs in visual communication. Springer. ISBN 10: 3540615458; ISBN 13: 9783540615453.
  • Rachowicz, W., J. T. Oden, and L. Demkowicz. 1989. Toward a universal h-p adaptive finite element strategy, Part 3. Design of h-p meshes. Comput. Methods Appl. Mech. Eng. 77 (1–2):181–212. doi: 10.1016/0045-7825(89)90131-X.
  • Ragusa, J. 2008. A simple Hessian-based 3D mesh adaptation technique with applications to the multigroup diffusion equations. Ann. Nucl. Energy 35 (11):2006–18. doi: 10.1016/j.anucene.2008.06.008.
  • Reed, W. H. 1971. New difference schemes for the neutron transport equation. Nucl. Sci. Eng. 46 (2):309–14. doi: 10.13182/NSE46-309.
  • Rivière, B. 2008. Discontinuous Galerkin methods for solving elliptic and parabolic equations: Theory and Implementation. Frontiers in Applied Mathematics. SIAM. doi: 10.1137/1.9780898717440.
  • Salari, K., and P. Knupp. 2000. Code verification by the method of manufactured solutions. Report No. SAND2000-1444. Sandia National Laboratories. doi: 10.2172/759450.
  • Sangalli, G., and M. Tani. 2016. Isogeometric preconditioners based on fast solvers for the Sylvester equation. SIAM J. Sci. Comput. 38 (6):A3644–A3671. doi: 10.1137/16M1062788.
  • Schunert, S., Y. Wang, R. Martineau, and M. D. DeHart. 2015. A new mathematical adjoint for the modified SAAF-SN equations. Ann. Nucl. Energy 75:340–52. doi: 10.1016/j.anucene.2014.08.028.
  • Semenza, L. A., E. E. Lewis, and E. C. Rossow. 1972. The application of the finite element method to the multigroup neutron diffusion equation. Nucl. Sci. Eng. 47 (3):302–10. doi: 10.13182/NSE72-A22416.
  • Theler, G. 2013. Unstructured grids and the multigroup neutron diffusion equation. Sci. Technol. Nucl. Install. 2013:1–26. doi: 10.1155/2013/641863.
  • Turner, J. A., K. Clarno, M. Sieger, R. Bartlett, B. Collins, R. Pawlowski, R. Schmidt, and R. Summers. 2016. The virtual environment for reactor applications (VERA): Design and architecture. Comput. Phys. 326:544–68. doi: 10.1016/j.jcp.2016.09.003.
  • Wang, Y. 2009. Adaptive mesh refinement solution techniques for the multigroup S N transport equation using a higher-order discontinuous finite element method. PhD thesis, Texas A&M University. https://hdl.handle.net/1969.1/ETD-TAMU-2009-05-641
  • Wang, Y., and J. C. Ragusa. 2007. Goal-oriented hp-mesh adaptation for 1-D multigroup diffusion equations. In Proceedings of the Joint International Toplical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. American Nuclear Society.
  • Wang, Y., and J. Ragusa. 2005. Adaptive hp-mesh refinement applied to 1-D, one-group diffusion problems. Trans. Am. Nucl. Soc. 93:585.
  • Wang, Y., and J. Ragusa. 2009a. Application of hp adaptivity to the multigroup diffusion equations. Nucl. Sci. Eng. 161 (1):22–48. doi: 10.13182/NSE161-22.
  • Wang, Y., and J. Ragusa. 2009b. On the convergence of DGFEM applied to the discrete ordinates transport equation for structured and unstructured triangular meshes. Nucl. Sci. Eng. 163 (1):56–72. doi: 10.13182/NSE08-72.
  • Wang, Y., and J. Ragusa. 2011. Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes. Comput. Phys. 230 (3):763–88. doi: 10.1016/j.jcp.2010.10.018.
  • Wang, Y., W. Bangerth, and J. Ragusa. 2009. Three-dimensional h-adaptivity for the multigroup neutron diffusion equations. Prog. Nucl. Energy 51 (3):543–55. doi: 10.1016/j.pnucene.2008.11.005.
  • Warsa, J. S. 2008. A continuous finite element-based, discontinuous finite element method for S N transport. Nucl. Sci. Eng. 160 (3):385–400. doi: 10.13182/NSE160-385TN.
  • Welch, J. A. 2018. Isogeometric analysis for second-order forms of the neutron transport equation with applications to reactor physics. PhD thesis. Imperial College London.
  • Welch, J. A., J. Kópházi, A. R. Owens, and M. D. Eaton. 2017a. A geometry preserving, conservative, mesh-to-mesh isogeometric interpolation algorithm for spatial adaptivity of the multigroup, second-order even-parity form of the neutron transport equation. Comput. Phys. 347:129–46. doi: 10.1016/j.jcp.2017.06.015.
  • Welch, J. A., J. Kópházi, A. R. Owens, and M. D. Eaton. 2017b. Isogeometric analysis for the multigroup neutron diffusion equation with applications in reactor physics. Ann. Nucl. Energy 101:465–80. doi: 10.1016/j.anucene.2016.11.015.
  • Wilson, S. G. 2021. Self-adaptive isogeometric spatial discretisations of the first and second-order forms of the neutron transport equation with dual-weighted residual error measures and diffusion acceleration. PhD thesis, Imperial College London.
  • Wilson, S. G., J. Kópházi, A. R. Owens, and M. D. Eaton. 2018. Interior penalty schemes for discontinuous isogeometric methods with an application to nuclear reactor physics. In Proceedings of the International Conference of Nuclear Engineering (ICONE26), Vol. 3. Nuclear Fuel and Material, Reactor Physics and Transport Theory. ASME. doi: 10.1115/ICONE26-81322