29
Views
0
CrossRef citations to date
0
Altmetric
Article

Numerical Simulation of MHD Radiative Casson Nanofluid Flow over a Nonlinearly Heated Stretching Sheet Embedded in Porous Medium

&

References

  • Ali, M. Y., S. Reza-E-Rabbi, S. F. Ahmmed, M. N. Nabi, A. K. Azad, and S. M. Muyeen. 2024. Hydromagnetic flow of Casson nano-fluid across a stretched sheet in the presence of thermoelectric and radiation. Inter. J. Therm. 21:100484. 10.1016/j.ijft.2023.100484.
  • Al-Mamun, A., S. M. Arifuzzaman, S. Reza-E-Rabbi, U. S. Alam, S. Islam, and M. S. Khan. 2021. Numerical simulation of periodic MHD Casson nanofluid flow through porous stretching sheet. SN Appl. Sci. 3 (2):271. 10.1007/s42452-021-04140-3.
  • Ghadikolaei, S. S., K. Hosseinzadeh, D. D. Ganji, and B. Jafari. 2018. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 12:176–87. 10.1016/j.csite.2018.04.009.
  • Kaswan, P., M. Kumar, and M. Kumari. 2023. Analysis of a bioconvection flow of magnetocross nanofluid containing gyrotactic microorganisms with activation energy using an artificial neural network scheme. Result. Engng. 17:101015. 10.1016/j.rineng.2023.101015.
  • Mabood, F., T. A. Yusuf, and I. E. Sarris. 2020. Entropy generation and irreversibility analysis on free convective unsteady MHD Casson fluid flow over a stretching sheet with Soret/Dufour in porous media. Special Topics Rev. Porous Media 11 (6):595–611. 10.1615/SpecialTopicsRevPorousMedia.2020033867.
  • Mahabaleshwar, U. S., A. B. Vishalakshi, G. V. Bognar, and S. M. Mallikarjunaiah. 2022. Effect of thermal radiation on the flow of a Boussinesq couple stress nanofluid over a porous nonlinear stretching sheet. Int. J. Appl. Comput. Math. 8 (4):169. 10.1007/s40819-022-01355-9.
  • Mahdavi, M., M. Saffar-Avval, S. Tiari, and Z. Mansoori. 2014. Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transf. 79:496–506. 10.1016/j.ijheatmasstransfer.2014.08. 10.1016/j.ijheatmasstransfer.2014.08.037
  • Mahmood, Z., S. M. Eldin, K. Rafique, and U. Khan. 2023. Numerical analysis of MHD tri-hybrid nanofluid over a nonlinear stretching/shrinking sheet with heat generation/absorption and slip conditions. Alexandria Engng J. 76:799–819. 10.1016/j.aej.2023.06.081.
  • Masood, S., and M. Farooq. 2021. Influence of thermal stratification and thermal radiation on graphene oxide-Ag/H 2 O hybrid nanofluid. J. Therm. Anal. Calorim. 143 (2):1361–70. 10.1007/s10973-020-10227-7.
  • Mulinti, V. R., and L. Pallavarapu. 2021. Influence of thermal radiation and viscous dissipation on MHD flow of UCM fluid over a porous stretching sheet with higher order chemical reaction. Special Topics Rev. Porous Media 12 (4):33–49. 10.1615/SpecialTopicsRevPorousMedia.2020033950.
  • Nawaz, M., R. Naz, and M. Awais. 2018. Magnetohydrodynamic axisymmetric flow of Casson fluid with variable thermal conductivity and free stream. Alexandria Engng. J. 57 (3):2043–50. 10.1016/j.aej.2017.05.016.
  • Oke, A. S., W. N. Mutuku, M. Kimathi, and I. L. Animasaun. 2020. Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Engng. 9 (1):398–411. 10.1515/nleng-2020-0025.
  • Pati, S., A. Borah, M. P. Boruah, and P. R. Randive. 2022. Critical review on local thermal equilibrium and local thermal non-equilibrium approaches for the analysis of forced convective flow through porous media. Int. Commun. Heat Mass Transfer 132:105889. 10.1016/j.icheatmasstransfer.2022.10. 10.1016/j.icheatmasstransfer.2022.105889
  • Puneeth, V., S. Manjunatha, J. K. Madhukesh, and G. K. Ramesh. 2021. Three dimensional mixed convection flow of hybrid Casson nanofluid past a non-linear stretching surface: A modified Buongiorno’s model aspects. Chaos, Solitons Fractal. 152:111428. 10.1016/j.chaos.2021.111428.
  • Rasool, G., A. J. Chamkha, T. Muhammad, A. Shafiq, and I. Khan. 2020. Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propul. Power Res. 9 (2):159–68. 10.1016/j.jppr.2020.04.003.
  • Reddy, M. V., M. Ajithkumar, S. A. Lone, F. Ali, P. Lakshminarayana, and A. Saeed. 2024. Magneto-Williamson nanofluid flow past a wedge with activation energy: Buongiorno model. Adv. Mech. Eng. 16 (1):16878132231223027. 10.1177/16878132231223027.
  • Reddy, M. V., and P. Lakshminarayana. 2021. Cross-diffusion and heat source effects on a three-dimensional MHD flow of Maxwell nanofluid over a stretching surface with chemical reaction. Eur. Phys. J. Spec. Top. 230 (5):1371–9. 10.1140/epjs/s11734-021-00037-9.
  • Reddy, M. V., and P. Lakshminarayana. 2022. Higher order chemical reaction and radiation effects on magnetohydrodynamic flow of a Maxwell nanofluid with Cattaneo–Christov heat flux model over a stretching sheet in a porous medium. J. Fluid. Engng. 144 (4):041204. 10.1115/1.4053250.
  • Reddy, M. V., and P. Lakshminarayana. 2022. MHD radiative flow of Williamson nanofluid with Cattaneo-Christov model over a stretching sheet through a porous medium in the presence of chemical reaction and suction/injection. J. Por. Media 25 (12):1–15. 10.1615/JPorMedia.2022041423.
  • Reddy, M. V., P. Lakshminarayana, and K. Vajravelu. 2020. Magnetohydrodynamic radiative flow of a Maxwell fluid on an expanding surface with the effects of Dufour and Soret and chemical reaction. Comput. Thermal Sci. 12 (4):317–27. 10.1615/ComputThermalScien.2020034147.
  • Reddy, M. V., P. Lakshminarayana, and K. Vajravelu. 2021. A comparative study of MHD non-Newtonian fluid flows with the effects of chemical reaction and radiation over a stretching sheet. Comput. Thermal Sci. 13 (5):17–29. 10.1615/ComputThermalScien.2021037094.
  • Sahoo, A., and R. Nandkeolyar. 2023. Entropy generation in magnetohydrodynamic radiative non-Darcy slip flow of a Casson nanofluid with Hall effects and activation energy. J. Magn. Magn. Mater. 575:170712. 10.1016/j.jmmm.2023.170712.
  • Souayeh, B., M. G. Reddy, P. Sreenivasulu, T. Poornima, M. Rahimi-Gorji, and I. M. Alarifi. 2019. Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle. J. Mol. Liq. 284:163–74. 10.1016/j.molliq.2019.03.151.
  • Ullah, I., S. Shafie, and I. Khan. 2017. Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium. J. King Saud Univ.-Sci. 29 (2):250–9. 10.1016/j.jksus.2016.05.003.
  • Varun Kumar, R. S., P. Gunderi Dhananjaya, R. Naveen Kumar, R. J. Punith Gowda, and B. C. Prasannakumara. 2022. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction. Int. J. Comput. Method. Eng. Sci. Mech. 23 (1):12–19. 10.1080/15502287.2021.1900451.
  • Vinodkumar Reddy, M., P. Lakshminarayana, K. Vajravelu, and G. Sucharitha. 2023. Activation of energy in MHD Casson nanofluid flow through a porous medium in the presence of convective boundary conditions and suction/injection. Numerical Heat Transfer, Part A: Appl.:1–17. 10.1080/10407782.2023.2271655.
  • Vinodkumar Reddy, M., K. Vajravelu, P. Lakshminarayana, and G. Sucharitha. 2024. Heat source and Joule heating effects on convective MHD stagnation point flow of Casson nanofluid through a porous medium with chemical reaction. Num. Heat Transfer Part B Fundament. 85 (3):286–304. 10.1080/10407790.2023.2233694.
  • Wang, F., J. Zhang, S. Algarni, M. Naveed Khan, T. Alqahtani, and S. Ahmad. 2022. Numerical simulation of hybrid Casson nanofluid flow by the influence of magnetic dipole and gyrotactic microorganism. Waves Random Complex Medium. :1–16. 10.1080/17455030.2022.2032866.
  • Waqas, M., W. A. Khan, A. A. Pasha, N. Islam, and M. M. Rahman. 2022. Dynamics of bioconvective Casson nanoliquid from a moving surface capturing gyrotactic microorganisms, magnetohydrodynamics and stratifications. Thermal Science and Engineering Progress 36:101492. 10.1016/j.tsep.2022.101492.
  • Yanala, D. R., S. G. Bejawada, and K. S. Nisar. 2023. Influence of chemical reaction and heat generation/absorption on unsteady magneto Casson nanofluid flow past a non-linear stretching Riga plate with radiation. Case Stud. Therm. Eng. 50:103494. 10.1016/j.csite.2023.103494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.