184
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Cooperative vehicular platooning: a multi-dimensional survey towards enhanced safety, security and validation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 123-175 | Received 08 Sep 2022, Accepted 12 May 2023, Published online: 23 May 2023

References

  • Lu D, Li Z, Huang D, et al. VC-bots: a vehicular cloud computing testbed with mobile robots. In: Proceedings of the First International Workshop on Internet of Vehicles and Vehicles of Internet - IoV-VoI ’16; Paderborn, Germany. ACM Press; 2016. p. 31–36.
  • López-Lambas ME. The socioeconomic impact of the intelligent vehicles. Intelligent vehicles. (Enabling technologies and future developments 2018; Elsevier:ElsevierVol. 1: pp. 437–453. Available from https://linkinghub.elsevier.com/retrieve/pii/B9780128128008000114
  • Woldeamanuel M, Nguyen D. Perceived benefits and concerns of autonomous vehicles: an exploratory study of millennials’ sentiments of an emerging market. Res Transp Econ. 2018;71:44–53.Nov. Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S0739885918301380 10.1016/j.retrec.2018.06.006
  • The Business Research Company. Autonomous cars global market report 2020-30: COVID-19 Growth and Change. The Business Research Company; 2020. http://Available from: https://www.globenewswire.com/news-release/2020/05/20/2036203/0/en/Global- Autonomous-Cars-Market-2020-to-2030-COVID-19-Growth-and-Change.html.
  • Frost. Global autonomous driving market outlook, 2018; 2018. Available from: https://info.microsoft.com/rs/157-GQE-382/images/K24A-2018%20Frost%20%26%20Sullivan%20-%20Global%20Autonomous%20Driving%20Outlook.pdf.
  • Taeihagh A, Lim HSM. Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks. Transp Rev. 2019Jan;39(1):103–128. http://Available from. https://www.tandfonline.com/doi/full/10.1080/01441647.2018.1494640 10.1080/01441647.2018.1494640.
  • Hussain R, Zeadally S. Autonomous cars: research results, issues and future challenges. IEEE Commun Surv Tutorials. 2018 Oct;21(2):1275–1313.
  • Society of Motor Manufacturers & Traders. Truck Platooning: the future of road transport; 2020. Available from: https://www.smmt.co.uk/2020/06/has-truck-platooning-hit-the-end-of-the-road.
  • Tangirala NT, Abraham A, Choudhury A, et al. Analysis of Packet drops and Channel Crowding in Vehicle Platooning using V2X communication. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI); November; Bangalore, India. IEEE; 2018. p. 281–286.
  • Amoozadeh M, Raghuramu A, Chuah C, et al. Security vulnerabilities of connected vehicle streams and their impact on cooperative driving. IEEE commun mag. 2015 Jun;53(6):126–132.
  • Gong S, Du L. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles. Transp Res E Method. 2018 Oct;116:25–61.
  • Li Y, Chen W, Peeta S, et al. Platoon control of connected multi-vehicle systems under V2X Communications: design and experiments; IEEE Transactions on Intelligent Transportation Systems; 2019. p. 1891–1902.
  • Lyamin N, Deng Q, Vinel A Study of the platooning fuel efficiency under ETSI ITS-G5 communications. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC); November; Rio de Janeiro, Brazil. IEEE; 2016. p. 551–556.
  • Jin L, Čičič M, Amin S, et al. Modeling the impact of vehicle platooning on highway congestion: a fluid queuing approach. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week) - HSCC ’18; Porto, Portugal. ACM Press; 2018. p. 237–246.
  • Karoui O, Khalgui M, Koubâa A, et al. Dual mode for vehicular platoon safety: simulation and formal verification. Inf Sci. 2017 Sep;402:216–232.
  • Kavathekar P, Chen Y Detc2011/mesa-47861 Draft: vehicle Platooning: a Brief Survey and Categorization. Washington, DC, USA: Proceedings of The ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference; 2011.
  • Guanetti J, Kim Y, Borrelli F. Control of connected and automated vehicles: state of the art and future challenges. Annu Rev Control. 2018 Apr;45(1):18–40. ArXiv: 1804.03757. DOI:10.1016/j.arcontrol.2018.04.011.
  • Kulla E, Jiang N, Spaho E, et al.et al. A survey on platooning techniques in VANETs. In: Barolli L, Javaid N Ikeda M, editors. Complex, intelligent, and software intensive systems. Series Title: Advances in Intelligent Systems and Computing. Cham: Springer International Publishing; 2019. Vol. 772. pp. 650–659.
  • Zeadally S, Guerrero J, Contreras J. A tutorial survey on vehicle-to-vehicle communications. Telecommunication Systems. 2020Mar;73(3):469–489. Available from. 10.1007/s11235-019-00639-8
  • Lu Z, Qu G, Liu Z. A survey on recent advances in vehicular network security, trust, and privacy. IEEE Trans Intell Transp Syst. 2019 Feb;20(2):760–776.
  • Lee SW, Lee SJ, Lee DH. Attack on Vehicular Platooning and Mitigation Strategy: a Survey. Appl Mech Mater. 2017;865:423–428.Jun. Available fromhttps://www.scientific.net/AMM.865.423
  • Jia D, Lu K, Wang J, et al. A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys & Tutorials. 2016;18(1):263–284. DOI:10.1109/COMST.2015.2410831
  • Li SE, Zheng Y, Li K, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Intelligent Transportation Systems MagazineIeee Intelligent Transportation Systems MagazineIEEE Intelligent Transportation Systems MagazineIEEE Intelligent Transportation Systems Magazine. 2017; 9(3):46–58. Conference Name 10.1109/MITS.2017.2709781
  • Zhang L, Chen F, Ma X, et al. Fuel economy in truck platooning: a literature overview and directions for future research. J Adv Transp. 2020 Jan;2020:1–10. Available from: https://www.hindawi.com/journals/jat/2020/2604012/
  • Soni A, Hu H. Formation Control for a Fleet of Autonomous Ground Vehicles: a Survey. Robotics. 2018Nov;7(4):67. Available from. http://www.mdpi.com/2218-6581/7/4/6710.3390/robotics7040067
  • Wang Z, Wu G, Barth MJ A Review on Cooperative Adaptive Cruise Control (CACC) Systems: architectures, Controls, and Applications. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); November; Maui, Hawaii, USA. IEEE; 2018. p. 2884–2891. ISSN: 2153-0017.
  • Caruntu CF, Braescu C, Maxim A, et al. Distributed model predictive control for vehicle platooning: a brief survey. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC); October; Sinaia, Romania. IEEE; 2016. p. 644–650.
  • Wang J, Shao Y, Ge Y, et al. A Survey of Vehicle to Everything (V2X) Testing. Sensors. 2019Jan; 19(2):334. Available fromhttp://www.mdpi.com/1424-8220/19/2/334
  • Fakhfakh F, Tounsi M, Mosbah M. Vehicle platooning systems: review, classification and validation strategies. International Journal Of Networked And Distributed Computing. 2020;8(4):11. Available from: https://www.atlantis-press.com/article/125944290
  • Eichler S Performance Evaluation of the IEEE 802.11p WAVE Communication Standard. In: 2007 IEEE 66th Vehicular Technology Conference; September; Baltimore, MD, USA. IEEE; 2007. p. 2199–2203.
  • Zhu M, Wang X, Wang Y. Human-like autonomous car-following model with deep reinforcement learning. Transp Res Part C Emerging Technol. 2018;97:348–368.Dec. Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S0968090X1830055X10.1016/j.trc.2018.10.024
  • Simonelli F, Bifulco GN, Martinis VD, et al. Human-like adaptive cruise control systems through a learning machine approach. In:​ Avineri​ E. Applications of soft computing. Berlin, Germany: Springer; 2009. pp. 240–249.
  • Wilson R, Ward J. Car-following models: fifty years of linear stability analysis – a mathematical perspective. Transp Plann Technol. 2011 Feb;34(1):3–18.
  • Zheng Z, Ahn S, Chen D. Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform. Procedia Social And Behavioral Sciences. 2011;1:15.
  • Sun J, Zheng Z, Sun J. Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transp Res E Method. 2018;109:212–237.Mar. Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S019126151730853610.1016/j.trb.2018.01.013
  • Treiber M, Kesting A Traffic flow dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. Available from: 10.1007/978-3-642-32460-4.
  • Xiao L, Gao F. Practical string stability of platoon of adaptive cruise control vehicles. IEEE Trans Intell Transp Syst. 2011 Dec;12(4):1184–1194.
  • Middleton RH, Braslavsky JH. String instability in classes of linear time invariant formation control with limited communication range. IEEE Trans Autom Control. 2010 Jul;55(7):1519–1530.
  • Omae M, Fukuda R, Ogitsu T, et al. Spacing control of cooperative adaptive cruise control for heavy-duty vehicles. IFAC Proceedings Volumes. 2013;46(21):58–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474667016383434.
  • Seiler P, Pant A, Hedrick K. Disturbance propagation in vehicle strings. IEEE Trans Autom Control. 2004 Oct;49(10):1835–1841.
  • Zhao Y, Minero P, Gupta V. On disturbance propagation in leader–follower systems with limited leader information. Automatica. 2014 Feb;50(2):591–598.
  • Chen N, Wang M, Alkim T, et al. A robust longitudinal control strategy of platoons under model uncertainties and time delays. J Adv Transp. 2018 ; 2018:1–13.
  • Yu SM, Wu SN, Zhao YB, et al. Delayed feedback MPC algorithms of vehicle platoons subject to constraints on measurement range and driving behaviors. Asian J Control. 2018 Nov;20(6):2260–2270.
  • Zhu Y, Wu J, Su H. V2V-Based cooperative control of uncertain, disturbed and constrained nonlinear CAVs platoon. IEEE Trans Intell Transp Syst. 2020;Pre-print:1–11.
  • Feng S, Sun H, Zhang Y, et al. Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints. IEEE Trans Control Syst Technol. 2020 May;28(3):1066–1073.
  • Chehardoli H, Homaeinezhad M Stable control of a heterogeneous platoon of vehicles with switched interaction topology, time-varying communication delay and lag of actuator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017 ;231(22):4197–4208.
  • di Bernardo M, Salvi A, Santini S. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans Intell Transp Syst. 2015 Feb;16(1):102–112.
  • Zhou J, Peng H. Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Trans Intell Transp Syst. 2005 Jun;6(2):229–237.
  • Chehardoli H, Homaeinezhad MR, Ghasemi A Control design and stability analysis of homogeneous traffic flow under time delay: a new spacing policy. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2019 ;233(3):622–635.
  • Luu DL, Lupu C, Ismail LS, et al. Spacing control of cooperative adaptive cruise control vehicle platoon. In: 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR); May; Cluj-Napoca, Romania. IEEE; 2020. p. 1–6.
  • Wang J, Luo X, Wong W, et al. Specified-time vehicular platoon control with flexible safe distance constraint. IEEE Trans Veh Technol. 2019 Nov;68(11):10489–10503.
  • Stüdli S, Seron MM, Middleton RH. Vehicular Platoons in cyclic interconnections with constant inter-vehicle spacing. IFAC-Papersonline. 2017 Jul;50(1):2511–2516.
  • Li Y, Li K, Zheng T, et al. Evaluating the performance of vehicular platoon control under different network topologies of initial states. Phys A Stat Mech Appli. 2016 May;450:359–368.
  • Gao W, Shi Y, Chen S Scalable platooning based on directed information flow topology with granulating method. IEEE Access. 2019;7:176634–176645. Conference Name: IEEE Access.
  • Khatir ME, Davidson EJ Bounded stability and eventual string stability of a large platoon of vehicles using non-identical controllers. In: 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601); Vol. 1; December; Nassau, Bahamas. IEEE; 2004. p. 1111–1116 Vol.1.
  • Ghasemi A, Kazemi R, Azadi S. Stable decentralized control of a platoon of vehicles with heterogeneous information feedback. IEEE Trans Veh Technol. 2013 Nov;62(9):4299–4308.
  • Hao H, Barooah P. Stability and robustness of large platoons of vehicles with double- integrator models and nearest neighbor interaction: stability and robustness of large platoons of vehicles. Int J Robust Nonlinear Control. 2013 Dec;23(18):2097–2122.
  • Vasconcelos Filho E, Severino R, Koubaa A, et al. An Integrated Lateral and Longitudinal Look Ahead Controller for Cooperative Vehicular Platooning. In: Martins​ A L, Ferreira J C, Kocian​, A. Intelligent Transport Systems, from Research and Development to the Market Uptake. Cham: Springer International Publishing; 2021; Vol. 364:pp. 142–159.
  • Gong S, Zhou A, Wang J, et al. Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology. 21st IEEE International Conference on Intelligent Transportation Systems; 4-7/11/2028; Hawaii, United States. 2018;1(1):6.
  • Zhang R, Abraham A, Dasgupta S, et al. Constrained Model Predictive Control using Kinematic Model of Vehicle Platooning in VISSIM Simulator. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV); Nov; Singapore. IEEE; 2018. p. 721–726.
  • Hu H, Pu Y, Chen M, et al. Plug and Play Distributed Model Predictive Control for Heavy Duty Vehicle Platooning and Interaction with Passenger Vehicles. In: 2018 IEEE Conference on Decision and Control (CDC); Dec; FL, USA. IEEE; 2018. p. 2803–2809.
  • Zheng Y, Li SE, Li K, et al. Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Trans Control Syst Technol. 2017 May;25(3):899–910.
  • He D, Qiu T, Luo R. Fuel efficiency-oriented platooning control of connected nonlinear vehicles: a distributed economic MPC approach. Asian J Control. 2020;22(4):1628–1638. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.2049
  • Kayacan E. Multiobjective H control for string stability of cooperative adaptive cruise control systems. IEEE Transactions On Intelligent Vehicles. 2017 Mar;2(1):52–61.
  • Ploeg J, Shukla DP, Nvd W, et al. Controller synthesis for string stability of vehicle platoons. IEEE Trans Intell Transp Syst. 2014 Apr;15(2):854–865.
  • Yang J, Liu X, Liu S, et al. Longitudinal Tracking Control of Vehicle Platooning Using DDPG-based PID. In: 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI); Dec; Hangzhou, China. IEEE; 2020. p. 656–661. Available from: https://ieeexplore.ieee.org/document/9338516/.
  • Liu T, Lei L, Zheng K, et al. Autonomous platoon control with integrated deep reinforcement learning and dynamic programming. IEEE Int Things J. 2023Mar; 10(6):5476–5489. Available fromhttps://ieeexplore.ieee.org/document/9951132/ 10.1109/JIOT.2022.3222128
  • Lei L, Liu T, Zheng K, et al. Deep reinforcement learning aided platoon control relying on V2X information. IEEE Trans Veh Technol. 2022Jun; 71(6):5811–5826. Available fromhttps://ieeexplore.ieee.org/document/9743615/ 10.1109/TVT.2022.3161585
  • Li M, Cao Z, Li Z. A Reinforcement Learning-Based Vehicle Platoon Control Strategy for Reducing Energy Consumption in Traffic Oscillations. IEEE Trans Neural Net Learn Syst. 2021Dec;32(12):5309–5322. Available from. https://ieeexplore.ieee.org/document/9410239/10.1109/TNNLS.2021.3071959
  • Chen C, Jiang J, Lv N, et al. An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement learning on network edge. IEEE Access. 2020;8:99059–99069. Available from https://ieeexplore.ieee.org/document/9102259/
  • Ding J, Pei H, Hu J, et al. Cooperative Adaptive Cruise Control in Vehicle Platoon under Environment of i-VICS. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); Nov; Maui, Hawaii, USA. IEEE; 2018. p. 1246–1251.
  • Ma F, Wang J, Zhu S, et al. Distributed control of cooperative vehicular platoon with nonideal communication condition. IEEE Transactions on Vehicular Technology. 2020 Aug;69(8):8207–8220. Conference Name: IEEE Transactions on Vehicular Technology.
  • Lei C, EMv E, Wolterink WK, et al. Impact of packet loss on CACC string stability performance. In: 2011 11th International Conference on ITS Telecommunications; Aug; St. Petersburg, Russia. IEEE; 2011. p. 381–386.
  • Halder K, Montanaro U, Dixit S, et al. Distributed H controller design and robustness analysis for vehicle platooning under random packet drop; IEEE Transactions on Intelligent Transportation Systems; 2020. p. 4373–4386.
  • Bansal K, Mukhija P. Event-triggered control of vehicular platoon system with time- varying delay and sensor faults. J Automob Eng. 2020;234(14):11.
  • Giordano G, Segata M, Blanchini F, et al. The joint network/control design of platooning algorithms can enforce guaranteed safety constraints. Ad Hoc Networks. 2019 Nov;94:101962. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1570870518308631
  • Wen S, Guo G, Chen B. Event-triggered cooperative control of vehicle platoons in vehicular ad hoc networks. Inf Sci. 2018 Aug;459(Distributed Event–Triggered Control and Estimation in Resource–Constrained Cooperative Networks):341–353.
  • Aslam A, Santos PM, Santos F, et al. Empirical performance models of MAC protocols for cooperative platooning applications. Electronics. 2019Nov; 8(11):1334. Available fromhttps://www.mdpi.com/2079-9292/8/11/1334 10.3390/electronics8111334
  • Chu T, Kalabic U Model-based deep reinforcement learning for CACC in mixed- autonomy vehicle platoon. In: 2019 IEEE 58th Conference on Decision and Control (CDC); Dec; Nice, France. IEEE; 2019. p. 4079–4084. Available from: https://ieeexplore.ieee.org/document/9030110/.
  • Wu Q, Ge H, Fan P, et al. Time-dependent performance analysis of the 802.11p-based platooning communications under disturbance; IEEE Transactions on Vehicular Technology; 2020; 15760–15773.
  • Dolk VS, Ploeg J, Heemels WPMH. Event-triggered control for string-stable vehicle platooning. IEEE Trans Intell Transp Syst. 2017 Dec;18(12):3486–3500.
  • Lyamin N, Vinel A, Jonsson M, et al. Cooperative awareness in VANETs: on ETSI EN 302 637-2 performance. IEEE Trans Veh Technol. 2018 Jan;67(1):17–28.
  • Thunberg J, Lyamin N, Sjöberg K, et al. Vehicle-to-vehicle communications for platooning: safety analysis. IEEE Network Letters. 2019 Dec;1(4):168–172.
  • Vinel A, Lan L, Lyamin N. Vehicle-to-vehicle communication in C-ACC/platooning scenarios. IEEE commun mag. 2015 Aug;53(8):192–197.
  • Segata M, Bloessl B, Joerer S, et al. Toward communication strategies for platooning: simulative and experimental evaluation. IEEE Trans Veh Technol. 2015 Dec;64(12):5411–5423.
  • Zhu S, Goswami D, Li H Evaluation platform of platoon control algorithms in complex communication scenarios. In: 2019 IEEE 89th Vehicular Technology Conference (; Apr.; Kuala Lumpur, Malaysia. IEEE; 2019. p. 1–5.
  • Plöger D, Krüger L, Timm-Giel A Analysis of communication demands of networked control systems for autonomous platooning. In: 2018 IEEE 19th International Symposium on”A World of Wireless, Mobile and Multimedia Networks” ( WoWMoM); Jun.; Chania, Greece. IEEE; 2018. p. 14–19.
  • Lyamin N, Vinel A, Smely D, et al. ETSI DCC: decentralized congestion control in C-ITS. IEEE commun mag. 2018 Dec;56(12):112–118.
  • Yu T, Zhang S, Cao S, et al. Performance Evaluation for LTE-V based Vehicle-to-Vehicle Platooning Communication. In: 2018 24th Asia-Pacific Conference on Communications (APCC); Nov; Ningbo, China. IEEE; 2018. p. 15–20. ISSN: 2163-0771.
  • Vukadinovic V, Bakowski K, Marsch P, et al. 3GPP C-V2X and IEEE 802.11p for vehicle-to-vehicle communications in highway platooning scenarios. Ad Hoc Networks. 2018 May;74:17–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S157087051830057X
  • Vinel A, Lyamin N, Isachenkov P. Modeling of V2V communications for C-ITS safety applications: a CPS perspective. IEEE Commun Lett. 2018 Aug;22(8):1600–1603.
  • Karoui M, Freitas A, Chalhoub G Performance comparison between LTE-V2X and ITS- G5 under realistic urban scenarios. In: 2020 IEEE 91st Vehicular Technology Conference (; May; Antwerp, Belgium. IEEE; 2020. p. 1–7.
  • Dadras S, Dadras S, Winstead C Collaborative Attacks on Autonomous Vehicle Platooning. In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS); Aug; Windsor, Ontario, Canada. IEEE; 2018. p. 464–467.
  • Singh PK, Saikamal Tabjul G, Imran M, et al. Impact of Security Attacks on Cooperative Driving Use Case: cACC Platooning. In: TENCON 2018 - 2018 IEEE Region 10 Conference; Oct; Jeju Island, Korea. IEEE; 2018. p. 0138–0143. ISSN: 2159-3450.
  • Alnasser A, Sun H, Jiang J. Cyber security challenges and solutions for V2X communications: a survey. Comput Netw. 2019;151:52–67.Mar. Available fromhttps://linkinghub.elsevier.com/retrieve/pii/S138912861830615710.1016/j.comnet.2018.12.018
  • Sontowski M, Kopsell S, Strufe T, et al. Towards Secure Communication for High- Density Longitudinal Platooning. In: 2019 IEEE 90th Vehicular Technology Conference (; Sep; Honolulu, Hawaii, USA. IEEE; 2019. p. 1–7.
  • Xu L, Yu X, Wang H, et al. Physical layer security performance of mobile vehicular networks. Mobile Networks And Applications. 2020 Apr;25(2):643–649. Available from: 10.1007/s11036-019-01224-8
  • ElHalawany BM, El-Banna AAA, Wu K. Physical-layer security and privacy for vehicle-to-everything. IEEE commun mag. 2019 Oct;57(10):84–90.
  • Makarfi AU, Rabie KM, Kaiwartya O, et al. Physical layer security in vehicular networks with reconfigurable intelligent surfaces. In: 2020 IEEE 91st Vehicular Technology Conference; 25-28/05/2020; Antwerp, Belgium; May; Online. IEEE; 2020. p. 1–6. ISSN: 2577-2465.
  • Frötscher A, Monschiebl B, Drosou A, et al. Improve cybersecurity of C-ITS Road Side Infrastructure Installations: the SerIoT - Secure and Safe IoT approach. In: 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE); Nov; Graz, Austria. IEEE; 2019. p. 1–5. ISSN: 2378-1297.
  • Fernandes B. Implementation and analysis of IEEE and ETSI security standards for vehicular communications. Mobile Netw Appl. 2018;23(23):469–478.
  • Mousavinejad E, Yang F, Han QL, et al. Distributed cyber attacks detection and recovery mechanism for vehicle platooning. IEEE Trans Intell Transp Syst. 2020 Sep;21(9):3821–3834.
  • Zhang D, Shen YP, Zhou SQ, et al. Distributed secure platoon control of connected vehicles subject to DoS Attack: theory and application. IEEE Trans Syst Man Cybern. 2020;Pre-print:1–10.
  • Basiri MH, Pirani M, Azad NL, et al. Security-aware optimal actuator placement in vehicle platooning. Asian J Control. 2021 Mar;n/a(n/a):1–18. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.2567
  • Basiri MH, Pirani M, Azad NL, et al. Security of vehicle platooning: a game-theoretic approach. IEEE Access. 2019;7:185565–185579. Conference Name: IEEE Access.
  • Amoozadeh M, Deng H, Chuah CN, et al. Platoon management with cooperative adaptive cruise control enabled by VANET. Vehicular Commun. 2015 Apr;2(2):110–123.
  • Basiri MH, Azad NL, Fischmeister S Attack Resilient Heterogeneous Vehicle Platooning Using Secure Distributed Nonlinear Model Predictive Control. In: 2020 28th Mediterranean Conference on Control and Automation (MED); Sep; Saint-Raphaël, France. MED; 2020. p. 307–312. ISSN: 2473-3504.
  • Ucar S, Ergen SC, Ozkasap O Security vulnerabilities of IEEE 802.11p and visible light communication based platoon. In: 2016 IEEE Vehicular Networking Conference (VNC); Dec; Columbus, Ohio, USA. IEEE; 2016. p. 1–4. ISSN: 2157-9865.
  • Boeira F, Asplund M, Barcellos MP Mitigating Position Falsification Attacks in Vehicular Platooning. In: 2018 IEEE Vehicular Networking Conference (VNC); Dec; Taipei, Taiwan. IEEE; 2018. p. 1–4. ISSN: 2157-9865.
  • Petrillo A, Pescapé A, Santini S. A collaborative approach for improving the security of vehicular scenarios: the case of platooning. Comput Commun. 2018 Jun;122:59–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140366416304005
  • Zhu P, Zhu K, Zhang L Security Analysis of LTE-V2X and a Platooning Case Study. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); 6-9/07/2020; Toronto, Canada; Jul; Online. IEEE; 2020. p. 532–537.
  • Wang X, Xu C, Zhou Z, et al. A survey of blockchain-based cybersecurity for vehicular networks. In: 2020 International Wireless Communications and Mobile Computing (IWCMC); Jun.; Limassol, Cyprus. IEEE; 2020. p. 740–745. Available from: https://ieeexplore.ieee.org/document/9148566/.
  • Alladi T, Chamola V, Sahu N, et al. A comprehensive survey on the applications of blockchain for securing vehicular networks. IEEE Communications Surveys & Tutorials. 2022;24(2):1212–1239. Available from: https://ieeexplore.ieee.org/document/9738808/
  • Cao L, Yin H A Blockchain-Empowered Platoon Communication Scheme for Vehicular Safety Applications. In: 2021 IEEE 94th Vehicular Technology Conference (; Sep; Norman, OK, USA. IEEE; 2021. p. 1–6. Available from: https://ieeexplore.ieee.org/document/9625342/.
  • Singh PK, Singh R, Nandi SK, et al. Integrating blockchain with cacc for trust and platoon management. In: Shrivastava G, Le D Sharma K editors. Cryptocurrencies and blockchain technology applications 1st Wiley. 2020; pp. 77–97. Available from https://onlinelibrary.wiley.com/doi/10.1002/9781119621201.ch5
  • Wooderson P, Ward D Cybersecurity testing and validation. Warrendale, PA: SAE International; 2017. SAE Technical Paper 2017-01-1655. ISSN: 0148-7191, 2688–3627; http://Available from: https://www.sae.org/publications/technical-papers/content/2017-01- 1655/.
  • Pilz C, Steinbauer G, Schratter M, et al. Development of a Scenario Simulation Platform to Support Autonomous Driving Verification. In: 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE); Nov; Graz, Austria. IEEE; 2019. p. 1–7. ISSN: 2378-1297.
  • Open Source Robotics Foundation. Gazebo: root Simularion Made Easy; 2020. Available from: http://gazebosim.org/.
  • Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: an Open Urban Driving Simulator. In: 1st Annual Conference on Robot Learning; Nov; Mountain View, California. robot-learning.org; 2017. p. 16. ArXiv: 1711.03938; Available from: http://arxiv.org/abs/1711.03938.
  • Lopez PA, Behrisch M, Bieker-Walz L, et al. Microscopic Traffic Simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); Nov; Maui, HI, USA. IEEE; 2018. p. 2575–2582.
  • Riebl R, Günther H, Facchi C, et al. Artery: extending Veins for VANET applications. In: 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS); Jun.; Budapest, Hungary. IEEE; 2015. p. 450–456.
  • Aramrattana M, Larsson T, Jansson J, et al. A simulation framework for cooperative intelligent transport systems testing and evaluation. Transportation Research Part F: Traffic Psychology And Behaviour. 2019 Feb;61:268–280. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1369847816306635
  • Riebl R, Nardini G, Virdis A. Simulating LTE-Enabled Vehicular Communications. In: Virdis A, Kirsche M. Recent advances in network simulation. Cham: Springer International Publishing; 2019. pp. 407–423.
  • Riebl R, Obermaier C, Günther HJ. Artery: large Scale Simulation environment for ITS applications. In: Virdis A, Kirsche M. Recent advances in network simulation. Cham: Springer International Publishing; 2019. pp. 365–406.
  • Rondinone M, Maneros J, Krajzewicz D, et al. iTETRIS: a modular simulation platform for the large scale evaluation of cooperative ITS applications. Simul Modell Pract Theory. 2013 May; 34:99–125.
  • Segata M, Joerer S, Bloessl B, et al. Plexe: a platooning extension for Veins. In: 2014 IEEE Vehicular Networking Conference (VNC); Dec; Paderborn, Germany. IEEE; 2014. p. 53–60.
  • Jia D, Ngoduy D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication. Transp Res Part C Emerging Technol. 2016 Jul;68:245–264. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968090X16300122
  • Balador A, Bai C, Sedighi F A comparison of decentralized congestion control algorithms for multiplatooning communications. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (Per- Com Workshops); Mar.; Kyoto, Japan. IEEE; 2019. p. 674–680. Available from: https://ieeexplore.ieee.org/document/8730578/.
  • Sommer C Veins, the open source vehicular network simulation framework; 2019. Available from: http://veins.car2x.org/.
  • Ribeiro B, Gonçalves F, Santos A, et al. Simulation and testing of a platooning management protocol implementation. In: Koucheryavy Y, Mamatas L, Matta I. Wired/Wireless internet communications. Cham:Springer International Publishing; Vol. 10372. pp. 174–185. Series Title: Lecture Notes in Computer Science 2017;
  • Schünemann B. V2X simulation runtime infrastructure VSimRTI: an assessment tool to design smart traffic management systems. Comput Netw. 2011 Oct;55(14):3189–3198.
  • Chen J, ShangGuan W, Cai B, et al. Intelligent Platoon Operating Slot Optimization Method based on Drivers’ Overtaking Behavior. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC); Oct; Auckland, New Zealand. IEEE; 2019. p. 1947–1952.
  • Farag A, Hussein A, Shehata OM, et al. Design and Validation of a Novel Adaptive Cruise Control Law for a Platoon of Vehicles. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES); Oct; Giza, Egypt. IEEE; 2020. p. 81–86.
  • Vasconcelos Filho E, Severino R, Rodrigues J, et al. CopaDrive: an integrated ROS Co- operative driving test and validation framework. In: Koubaa A. Robot Operating System (ROS). Cham:Springer International Publishing; Vol. 962; 2021. pp. 121–174; Series Title: Studies in Computational Intelligence
  • Llatser I, Jornod G, Festag A, et al. Simulation of cooperative automated driving by bidirectional coupling of vehicle and network simulators. In: 2017 IEEE Intelligent Vehicles Symposium (IV); Jun.; Los Angeles, CA, USA. IEEE; 2017. p. 1881–1886.
  • Karoui O, Guerfala E, Koubaa A, et al. Performance evaluation of vehicular platoons using Webots. IET Intelligent Transport Systems. 2017 Oct;11(8):441–449.
  • Jia D, Sun J, Sharma A, et al. Integrated simulation platform for conventional, connected and automated driving: a design from cyber-physical systems perspective. Transp Res Part C Emerging Technol. 2020;Pre-print:21.
  • Talebpour A, Mahmassani HS, Bustamante FE. Modeling driver behavior in a connected environment: integrated microscopic simulation of traffic and mobile wireless telecommunication systems. Transp Res Rec. 2016 Jan;2560(1):75–86.
  • Zhang K, Li X, Xie C, et al. A scenario-reconfigurable simulator for verifying service-oriented cooperation mechanisms and policies of connected intelligent vehicles:. International J Software Innovation. 2019 Jan;7(1):44–62. Available from: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSI.2019010103
  • Wang L, Iida R, Wyglinski AM. Vehicular network simulation environment via discrete event system modeling. IEEE Access. 2019;7:87246–87264.
  • Chai H, Zhang H, Ghosal D, et al. Dynamic traffic routing in a network with adaptive signal control. Transp Res Part C Emerging Technol. 2017 Dec;85:64–85. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968090X17302279
  • Riebl R, Obermaier C, Neumeier S, et al. Vanetza: boosting Research on Inter-Vehicle Communication. In: Fachgesprach Inter-Vehicle Communicaation; 2017; Fachgespräch, Germany. IEEE; 2017. p. 37–40.
  • Xu Z, Wang M, Zhang F, et al. PaTAVTT: a Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking. J Adv Transp. 2017;2017:1–11. Available from: https://www.hindawi.com/journals/jat/2017/9203251/
  • Joshi A A Novel Approach for Validating Adaptive Cruise Control (ACC) Using Two Hardware-in-the-Loop (HIL) Simulation Benches. Warrendale, PA: SAE International; 2019. SAE Technical Paper 2019-01-1038. ISSN: 0148-7191, 2688–3627; Available from: https://www.sae.org/publications/technical-papers/content/2019-01-1038/.
  • Cyberbotics Ltd. Webots documentation: webots User Guide; 2020. Available from: https://cyberbotics.com/doc/guide/index.
  • Obermaier C, Riebl R, Facchi C Fully Reactive Hardware-in-the-Loop Simulation for VANET Devices. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); Nov; Maui, Hawaii, USA. IEEE; 2018. p. 3755–3760.
  • Cinque E, Valentini F, Iovine A, et al. An adaptive strategy to mitigate instability in the ETSI DCC: experimental validation. In: 2017 15th International Conference on ITS Telecommunications (ITST); May; Warsaw, Poland. IEEE; 2017. p. 1–6.
  • Szendrei Z, Varga N, Bokor L. A SUMO-Based Hardware-in-the-Loop V2X Simulation Framework for Testing and Rapid Prototyping of Cooperative Vehicular Applications. In: Jármai K, Bolló, B. Vehicle and Automotive Engineering 2. Cham: Springer International Publishing; 2018. pp. 426–440.
  • Amoozadeh M, Ching B, Chuah CN, et al. VENTOS: vehicular Network Open Simulator with Hardware-in-the-Loop Support. Procedia Comput Sci. 2019;151:61–68. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877050919304739
  • Shao Y, Mohd Zulkefli MA, Sun Z, et al. Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab. Transp Res Part C Emerging Technol. 2019 May; 102:121–135.
  • Valente AS, Montanaro U, Tufo M, et al. Design of a Platoon Management Strategy and Its Hardware-In-the Loop Validation. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring); May; Seoul, Korea. IEEE; 2014. p. 1–5.
  • Zhang W, Fu S, Cao Z, et al. An SDR-in-the-Loop Carla Simulator for C-V2X-Based Autonomous Driving. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); 6-9/07/2020; Toronto, Canadá; Jul; Online. IEEE; 2020. p. 1270–1271.
  • Vasconcelos Filho E, Guedes N, Vieira B, et al. Towards a Cooperative Robotic Platooning Testbed. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2020; Apr; Ponta Delgada, Portugal. IEEE; 2020. p. 332–337.
  • Vedder B, Vinter J, Jonsson M. A Low-Cost Model Vehicle Testbed with Accurate Positioning for Autonomous Driving. J Rob. 2018 Nov;2018:1–10.
  • Jansch-Porto JP, Dullerud GE Decentralized control with moving-horizon linear switched systems: synthesis and testbed implementation. In: 2017 American Control Conference (ACC); May; Seattle, WA, USA. IEEE; 2017. p. 851–856.
  • Feher A, Nagy L, Marton L Testbed for Mobile Robot Platoon Control System Evaluation. In: 2019 IEEE 19th International Symposium on Computational Intelligence and Informatics and 7th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Sciences and Robotics (CINTI-MACRo); Nov; Szeged, Hungary. IEEE; 2019. p. 000137–000142.
  • Rupp A, Tranninger M, Wallner R, et al. Fast and Low-Cost Testing of Advanced Driver Assistance Systems using Small-Scale Vehicles; IFAC-PapersOnLine​. 2019;52(5):34–39.
  • Lu D, Li Z, Huang D Platooning as a service of autonomous vehicles. In: 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM); Jun.; Macau, China. IEEE; 2017. p. 1–6.
  • Wang Y, Zhou Y, Li W, et al. Design of a Cooperative Vehicular Platoon System Based on Zynq/SoC Architecture. In: Zhao​ L, Meng​ W, Chen​ Q.Communications and Networking. Cham: Springer International Publishing. 2018; Vol. 210. pp. 335–344.
  • Li K, Ni W, Emami Y, et al. Design and Implementation of Secret Key Agreement for Platoon-based Vehicular Cyber-physical Systems. ACM Transac On Cyber-Physical Systems. 2020 Feb;4(2):1–20. Available from: https://dl.acm.org/doi/10.1145/3365996
  • Dadash AH. A Cyber-Physical Testbed for Wireless Networked Control Systems​. In: Faculty of engineering and sustainable development. Universit of Gavle; 2020.
  • Cao H, Gangakhedkar S, Ali AR, et al. A Testbed for Experimenting 5G-V2X Requiring Ultra Reliability and Low-Latency. In: WSA 2017 - 21th International ITG Workshop on Smart Antennas; Mar.; Berlin, Germany. IEEE; 2017. p. 1–4.
  • Jakka NC Emergency Braking in Platooning with Communication Loss [ dissertation]. Delft University of Technology; 2020.
  • Federal Higway Administration. Cooperative Driving Automation | FHWA - CARMA project; 2020. Available from: https://highways.dot.gov/research/operations/Cooperative-Driving-Automation.
  • Wei S, Zou Y, Zhang X, et al. An Integrated Longitudinal and Lateral Vehicle Following Control System with Radar and Vehicle-to-Vehicle Communication. IEEE Trans Veh Technol. 2019 Feb;68(2):1116–1127.
  • Dahlman E, Parkvall S, Skold J. 4G: lTE/LTE-Advanced for Mobile Broadband. 2nd ed. USA: Academic Press: Elsevier; 2014.
  • Ma J, Zhou F, Huang Z, et al. Hardware-In-The-Loop Testing of Connected and Automated Vehicle Applications: a Use Case for Cooperative Adaptive Cruise Control. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC); Nov; Maui, Hawaii, USA. IEEE; 2018. p. 2878–2883. ISSN: 2153-0017.
  • Vieira B A simulation approach for increased safety in advanced C-ITS scenarios. Polytechnic Institute of Porto (ISEP P.Porto); 2019. Master Thesis CISTER-TR-191206. Available from: http://hdl.handle.net/10400.22/15465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.