1,459
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in peripheral nerve regeneration as it relates to VCA

, , , &
Pages 75-88 | Received 13 Mar 2017, Accepted 14 Jun 2017, Published online: 29 Sep 2017

References

  • Weissenbacher A, Hautz T, Pratschke J, Schneeberger S. Vascularized composite allografts and solid organ transplants: similarities and differences. Curr Opinion Organ Transplantation 2013; 18(6):640-4; https://doi.org/10.1097/MOT.0000000000000019
  • Chim H, Amer H, Mardini S, Moran SL. Vascularized composite allotransplant in the realm of regenerative plastic surgery. Mayo Clin Proc 2014; 89(7):1009-20; https://doi.org/10.1016/j.mayocp.2014.05.009
  • Landin L, Bonastre J, Casado‐Sanchez C, Diez J, Ninkovic M, Lanzetta M, del Bene M, Schneeberger S, Hautz T, Lovic A, et al. Outcomes with respect to disabilities of the upper limb after hand allograft transplantation: a systematic review. Transplant Int 2012; 25(4):424-32; PMID:22332605; https://doi.org/10.1111/j.1432-2277.2012.01433.x
  • Petruzzo P, Lanzetta M, Dubernard JM, Landin L, Cavadas P, Margreiter R, Schneeberger S, Breidenbach W, Kaufman C, Jablecki J, et al. The international registry on hand and composite tissue transplantation. Transplantation 2010; 90(12):1590-4; https://doi.org/10.1097/TP.0b013e3181ff1472
  • Seddon H. Three types of nerve injury. Brain 1943; 66(4):237-88; https://doi.org/10.1093/brain/66.4.237
  • Sunderland S. Nerves and nerve injuries. Edinburgh: Livingstone; 1968
  • Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clinics 2013; 29(3):317-30; PMID:23895713; https://doi.org/10.1016/j.hcl.2013.04.002
  • Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 2011; 8(1):110; PMID:21878126; https://doi.org/10.1186/1742-2094-8-110
  • Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 1997; 14(1–2):67-116; PMID:9170101; https://doi.org/10.1007/BF02740621
  • Stoll G, Müller HW. Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathology 1999; 9(2):313-25; PMID:10219748; https://doi.org/10.1111/j.1750-3639.1999.tb00229.x
  • Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthopaedic Surgeons 2000; 8(4):243-52; PMID:10951113; https://doi.org/10.5435/00124635-200007000-00005
  • Terenghi G. Peripheral nerve regeneration and neurotrophic factors. J Anatomy 1999; 194(1):1-14; PMID:10227662; https://doi.org/10.1046/j.1469-7580.1999.19410001.x
  • Sosin M, Rodriguez ED. The face transplantation update: 2016. Plastic Reconstructive Surg 2016; 137(6):1841-50
  • Shores JT, Brandacher G, Lee WA. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience. Plastic Reconstructive Surg 2015; 135(2):351e-60e; PMID:25401735; https://doi.org/10.1097/PRS.0000000000000892
  • Rüegg EM, Hivelin M, Hemery F, Maciver C, Benjoar MD, Meningaud JP, Lantieri L. Face transplantation program in France: a cost analysis of five patients. Transplantation 2012; 93(11):1166-72; PMID:22495494; https://doi.org/10.1097/TP.0b013e31824e75fa
  • Lantieri L, Hivelin M, Audard V, Benjoar MD, Meningaud JP, Bellivier F, Ortonne N, Lefaucheur JP, Gilton A, Suberbielle C, et al. Feasibility, reproducibility, risks and benefits of face transplantation: a prospective study of outcomes. Am J Transplantation 2011; 11(2):367-78; PMID:21272240; https://doi.org/10.1111/j.1600-6143.2010.03406.x
  • Siemionow M, Papay F, Alam D, Bernard S, Djohan R, Gordon C, Hendrickson M, Lohman R, Eghtesad B, Coffman K, et al. Near-total human face transplantation for a severely disfigured patient in the USA. Lancet 2009; 374(9685):203-9; https://doi.org/10.1016/S0140-6736(09)61155-7
  • Dubernard JM, Lengelé B, Morelon E, Testelin S, Badet L, Moure C, Beziat JL, Dakpé S, Kanitakis J, D'Hauthuille C, et al. Outcomes 18 months after the first human partial face transplantation. N Eng J Med 2007; 357(24):2451-60; PMID:18077810; https://doi.org/10.1056/NEJMoa072828
  • Guo S, Han Y, Zhang X, Lu B, Yi C, Zhang H, Ma X, Wang D, Yang L, Fan X, et al. Human facial allotransplantation: a 2-year follow-up study. Lancet 2008; 372(9639):631-8; https://doi.org/10.1016/S0140-6736(08)61276-3
  • Fischer S, Kueckelhaus M, Pauzenberger R, Bueno E, Pomahac B. Functional outcomes of face transplantation. A J Transplantation 2015; 15(1):220-33; PMID:25359281; https://doi.org/10.1111/ajt.12956
  • Sicilia-Castro D, Gomez-Cia T, Infante-Cossio P, Gacto-Sanchez P, Barrera-Pulido F, Lagares-Borrego A, Narros-Gimenez R, Garcia-Perla A, Hernandez-Guisado JM, Gonzalez-Padilla JD. Reconstruction of a severe facial defect by allotransplantation in neurofibromatosis type 1: a case report. Transplantation Proc; 2011: Elsevier; 2011; 43(7):2831-7; https://doi.org/10.1016/j.transproceed.2011.06.030
  • Siemionow M, Gharb BB, Rampazzo A. Pathways of sensory recovery after face transplantation. Plastic Reconstructive Surg 2011; 127(5):1875-89; PMID:21532417; https://doi.org/10.1097/PRS.0b013e31820e90c3
  • Kaufman CL, Breidenbach W. World experience after more than a decade of clinical hand transplantation: update from the Louisville hand transplant program. Hand Clinics 2011; 27(4):417-21; PMID:22051383; https://doi.org/10.1016/j.hcl.2011.08.004
  • Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The Present and Future for Peripheral Nerve Regeneration. Orthopedics 2016; 25:1-16
  • Ray WZ, Mackinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 2010; 223(1):77-85; PMID:19348799; https://doi.org/10.1016/j.expneurol.2009.03.031
  • Trehan SK, Model Z, Lee SK. Nerve repair and nerve grafting. Hand Clin 2016; 32(2):119-25; PMID:27094885; https://doi.org/10.1016/j.hcl.2015.12.002
  • Isaacs J. Treatment of acute peripheral nerve injuries: current concepts. J Hand Surg Am 2010; 35(3):491-7; quiz 8; PMID:20138714; https://doi.org/10.1016/j.jhsa.2009.12.009
  • Clark WL, Trumble TE, Swiontkowski MF, Tencer AF. Nerve tension and blood flow in a rat model of immediate and delayed repairs. J Hand Surg Am 1992; 17(4):677-87; PMID:1629548; https://doi.org/10.1016/0363-5023(92)90316-H
  • de Medinaceli L, Prayon M, Merle M. Percentage of nerve injuries in which primary repair can be achieved by end-to-end approximation: review of 2,181 nerve lesions. Microsurgery 1993; 14(4):244-6; PMID:8412633; https://doi.org/10.1002/micr.1920140406
  • Wolfe SW, Johnsen PH, Lee SK, Feinberg JH. Long-nerve grafts and nerve transfers demonstrate comparable outcomes for axillary nerve injuries. J Hand Surg Am 2014; 39(7):1351-7; PMID:24785698; https://doi.org/10.1016/j.jhsa.2014.02.032
  • Al-Qattan MM. Refinements in the technique of ‘awake’ electrical nerve stimulation in the management of chronic low ulnar nerve injuries. Injury 2004; 35(11):1110-5; PMID:15488501; https://doi.org/10.1016/j.injury.2004.01.021
  • He YS, Zhong SZ. Acetylcholinesterase: a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operation. Plast Reconstr Surg 1988; 82(1):125-32; PMID:3380902; https://doi.org/10.1097/00006534-198882010-00022
  • Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014; 2014:698256; PMID:25276813; https://doi.org/10.1155/2014/698256
  • Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am 2000; 25(3):391-414; PMID:10811744; https://doi.org/10.1053/jhsu.2000.4165
  • Cabaud HE, Rodkey WG, McCarroll HR, Jr, Mutz SB, Niebauer JJ. Epineurial and perineurial fascicular nerve repairs: a critical comparison. J Hand Surg Am 1976; 1(2):131-7; PMID:797698; https://doi.org/10.1016/S0363-5023(76)80006-8
  • Young L, Wray RC, Weeks PM. A randomized prospective comparison of fascicular and epineural digital nerve repairs. Plast Reconstr Surg 1981; 68(1):89-93; PMID:7244005; https://doi.org/10.1097/00006534-198107000-00018
  • Colen KL, Choi M, Chiu DT. Nerve grafts and conduits. Plast Reconstr Surg 2009; 124(6 Suppl):e386-94; PMID:19952706; https://doi.org/10.1097/PRS.0b013e3181bf8430
  • Millesi H. Techniques for nerve grafting. Hand Clin 2000; 16(1):73-91, viii; PMID:10696578
  • Zadegan SA, Firouzi M, Erfanian R, Nabian MH, Zanjani LO, Kamrani RS. Effect of the number of sutures on nerve repair: A mechanical, functional and morphometric study of tibial nerve regeneration in wistar rats. J Orthopedic Spine Trauma 2016; 2(3):e8576; https://doi.org/10.5812/jost.8576
  • Narakas A. The use of fibrin glue in repair of peripheral nerves. Orthopedic Clinics North A 1988; 19(1):187-99; PMID:2447544
  • Sameem M, Wood TJ, Bain JR. A systematic review on the use of fibrin glue for peripheral nerve repair. Plastic Reconstructive Surg 2011; 127(6):2381-90; PMID:21311390; https://doi.org/10.1097/PRS.0b013e3182131cf5
  • Temple C, Ross D, Dunning C, Johnson J. Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques. J Reconstructive Microsurg 2004; 20(08):645-50; PMID:15630661; https://doi.org/10.1055/s-2004-861525
  • Lehman RA, Hayes GJ, Leonard F. Toxicity of alkyl 2-cyanoacrylates: I. Peripheral nerve. Arch Surg 1966; 93(3):441-6
  • Barton MJ, Morley JW, Stoodley MA, Lauto A, Mahns DA. Nerve repair: toward a sutureless approach. Neurosurg Rev 2014; 37(4):585-95; PMID:25015388; https://doi.org/10.1007/s10143-014-0559-1
  • Tse R, Ko JH. Nerve glue for upper extremity reconstruction. Hand Clinics 2012; 28(4):529-40; PMID:23101603; https://doi.org/10.1016/j.hcl.2012.08.006
  • Fischer DW, Beggs JL, Kenshalo Jr DL, Shetter AG. Comparative Study of Microepineurial Anastomoses with the Use of CO2 Laser and Suture Techniques in Rat Sciatic Nerves: Part 1: Surgical Technique, Nerve Action Potentials, and Morphological Studies. Neurosurgery 1985; 17(2):300-8; PMID:3929156; https://doi.org/10.1227/00006123-198508000-00009
  • Johnson TS, O'Neill AC, Motarjem PM, Amann C, Nguyen T, Randolph MA, Winograd JM, Kochevar IE, Redmond RW. Photochemical tissue bonding: a promising technique for peripheral nerve repair. J Surg Res 2007; 143(2):224-9; PMID:17543988; https://doi.org/10.1016/j.jss.2007.01.028
  • Henry FP, Goyal NA, David WS, Wes D, Bujold KE, Randolph MA, Winograd JM, Kochevar IE, Redmond RW. Improving electrophysiologic and histologic outcomes by photochemically sealing amnion to the peripheral nerve repair site. Surgery 2009; 145(3):313-21; PMID:19231584; https://doi.org/10.1016/j.surg.2008.11.005
  • O'Neill AC, Randolph MA, Bujold KE, Kochevar IE, Redmond RW, Winograd JM. Photochemical sealing improves outcome following peripheral neurorrhaphy. J Surg Res 2009; 151(1):33-9; PMID:18599081; https://doi.org/10.1016/j.jss.2008.01.025
  • Hoy RR, Bittner GD, Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science 1967; 156(3772):251-2; PMID:6021042; https://doi.org/10.1126/science.156.3772.251
  • Lane RD. A short-duration polyethylene glycol fusion technique for increasing production of monoclonal antibody-secreting hybridomas. J Immunol Methods 1985; 81(2):223-8; PMID:4020150; https://doi.org/10.1016/0022-1759(85)90207-8
  • Bittner G, Sengelaub D, Trevino R, et al. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res 2016; 94(3): 207-30
  • Bittner G, Keating C, Kane J, Britt JM, Spaeth CS, Fan JD, Zuzek A, Wilcott RW, Thayer WP, Winograd JM, Gonzalez-Lima F, et al. Rapid, effective, and long‐lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves. J Neurosci Res 2012; 90(5):967-80; PMID:22302646; https://doi.org/10.1002/jnr.23023
  • Bamba R, Waitayawinyu T, Nookala R, Riley DC, Boyer RB, Sexton KW, Boonyasirikool C, Niempoog S, Kelm ND, Does MD, et al. A novel therapy to promote axonal fusion in human digital nerves. J Trauma Acute Care Surg 2016; 81(5):S177-S83; PMID:27768666; https://doi.org/10.1097/TA.0000000000001203
  • Yan Y, Wood MD, Moore AM, Snyder-Warwick AK, Hunter DA, Newton P, Poppler L, Tung TH, Johnson PJ, Mackinnon SE. Robust axonal regeneration in a mouse vascularized composite allotransplant model undergoing delayed tissue rejection. Hand 2016; 11(4):456-463: 1558944715620791; PMID:28149214; https://doi.org/10.1177/1558944715620791
  • Lee M, Doolabh VB, Mackinnon SE, Jost S. FK506 promotes functional recovery in crushed rat sciatic nerve. Muscle Nerve 2000; 23(4):633-40; https://doi.org/10.1002/(SICI)1097-4598(200004)23:4<633::AID-MUS24>3.0.CO;2-Q
  • Lee AC, Yu VM, Lowe JB 3rd, Brenner MJ, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 2003; 184(1):295-303; PMID:14637100; https://doi.org/10.1016/S0014-4886(03)00258-9
  • Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. Biomed Res Int 2016; 2016:3856262; PMID:27556032; https://doi.org/10.1155/2016/3856262
  • Oppenheim RW, Houenou LJ, Johnson JE, Lin LF, Li L, Lo AC, Newsome AL, Prevette DM, Wang S. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 1995; 373(6512):344-6; PMID:7830769; https://doi.org/10.1038/373344a0
  • Tuffaha SH, Budihardjo JD, Sarhane KA, Khusheim M, Song D, Broyles JM, Salvatori R, Means KR, Jr, Higgins JP, Shores JT, et al. Growth hormone therapy accelerates axonal regeneration, promotes motor reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plastic Reconstructive Surg 2016; 137(6):1771-80; PMID:26890510; https://doi.org/10.1097/PRS.0000000000002188
  • Saceda J, Isla A, Santiago S, Morales C, Odene C, Hernández B, Deniz K. Effect of recombinant human growth hormone on peripheral nerve regeneration: Experimental work on the ulnar nerve of the rat. Neurosci Lett 2011; 504(2):146-50; PMID:21945950; https://doi.org/10.1016/j.neulet.2011.09.020
  • Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol 2007; 207(1):163-70; PMID:17669401; https://doi.org/10.1016/j.expneurol.2007.06.006
  • Zuo J, Neubauer D, Graham J, Krekoski CA, Ferguson TA, Muir D. Regeneration of axons after nerve transection repair is enhanced by degradation of chondroitin sulfate proteoglycan. Exp Neurol 2002; 176(1):221-8; PMID:12093099; https://doi.org/10.1006/exnr.2002.7922
  • Tuffaha S, Quigley M, Ng T, Gorantla VS, Shores JT, Pulikkottil B, Shestak C, Brandacher G, Lee WP. The effect of chondroitinase on nerve regeneration following composite tissue allotransplantation. The J Hand Surg 2011; 36(9):1447-52; PMID:21788107; https://doi.org/10.1016/j.jhsa.2011.06.007
  • Udina E, Verdu E, Navarro X. Effects of the immunophilin ligand FK506 on nerve regeneration in collagen guides seeded with Schwann cells in rats. Neurosci Lett 2004; 357(2):99-102; PMID:15036584; https://doi.org/10.1016/j.neulet.2003.11.070
  • Khuong HT, Midha R. Advances in nerve repair. Curr Neurol Neurosci Rep 2013; 13(1):322; PMID:23250767; https://doi.org/10.1007/s11910-012-0322-3
  • Glaus SW, Johnson PJ, Mackinnon SE. Clinical strategies to enhance nerve regeneration in composite tissue allotransplantation. Hand Clinics 2011; 27(4):495-509; PMID:22051390; https://doi.org/10.1016/j.hcl.2011.07.002
  • Tulaci KG, Tuzuner A, Karadas Emir H, Tatar İ, Sargon MF, Tulaci T, Karadavut Y, Samim EE. The effect of tacrolimus on facial nerve injury: Histopathological findings in a rabbit model. Am J Otolaryngol 2016; 37(5):393-7; PMID:27465503; https://doi.org/10.1016/j.amjoto.2016.06.003
  • Labroo P, Ho S, Sant H, Shea J, Gale BK, Agarwal J. Controlled Delivery of FK506 to Improve Nerve Regeneration. Shock 2016; 46(3 Suppl 1):154-9; PMID:27058050; https://doi.org/10.1097/SHK.0000000000000628
  • Labroo P, Shea J, Sant H, Gale B, Agarwal J. Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 2017; 55(4):570-581
  • Yan Y, MacEwan MR, Hunter DA, Farber S, Newton P, Tung TH, Mackinnon SE, Johnson PJ. Nerve regeneration in rat limb allografts: evaluation of acute rejection rescue. Plastic Reconstructive Surg 2013; 131(4):499e; PMID:23542267; https://doi.org/10.1097/PRS.0b013e31828275b7
  • Zealear DL, Rodriguez RJ, Kenny T, Billante MJ, Cho Y, Billante CR, Garren KC. Electrical stimulation of a denervated muscle promotes selective reinnervation by native over foreign motoneurons. J Neurophysiol 2002; 87(4):2195-9; PMID:11929937; https://doi.org/10.1152/jn.00451.2001
  • Al-Majed AA, Neumann CM, Brushart TM, Gordon T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 2000; 20(7):2602-8; PMID:10729340
  • Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 2002; 22(15):6631-8; PMID:12151542
  • Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 2000; 12(12):4381-90; PMID:11122348
  • Ahlborn P, Schachner M, Irintchev A. One hour electrical stimulation accelerates functional recovery after femoral nerve repair. Exp Neurol 2007; 208(1):137-44; PMID:17919580; https://doi.org/10.1016/j.expneurol.2007.08.005
  • Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol 2010; 223(1):192-202; https://doi.org/10.1016/j.expneurol.2009.09.020
  • Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 2007; 205(2):347-59; PMID:17428474; https://doi.org/10.1016/j.expneurol.2007.01.040
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213):1258096; PMID:25430774; https://doi.org/10.1126/science.1258096
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6):1262-78; PMID:24906146; https://doi.org/10.1016/j.cell.2014.05.010
  • Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 2013; 195(1):289-91; PMID:23833182; https://doi.org/10.1534/genetics.113.153825
  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121):823-6; https://doi.org/10.1126/science.1232033
  • Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166):84-7; https://doi.org/10.1126/science.1247005
  • Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature News 2016; 539(7630):479; https://doi.org/10.1038/nature.2016.20988
  • Dow LE, Fisher J, O'rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 2015; 33(4):390-4; PMID:25690852; https://doi.org/10.1038/nbt.3155
  • Park KW, Lin CY, Li K, Lee YS. Effects of Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression on dendritic outgrowth and demyelination after spinal cord injury. PLoS One 2015; 10(9):e0138301; PMID:26384335; https://doi.org/10.1371/journal.pone.0138301
  • Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 2015; 85(6):1244-56; PMID:25754821; https://doi.org/10.1016/j.neuron.2015.02.017
  • Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008; 322(5903):963-6; PMID:18988856; https://doi.org/10.1126/science.1161566
  • Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 2011; 480(7377):372-5; PMID:22056987; https://doi.org/10.1038/nature10594
  • Jin D, Liu Y, Sun F, Wang X, Liu X, He Z. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3. Nat Commun 2015; 6:8074; PMID:26598325; https://doi.org/10.1038/ncomms9074
  • Boerboom A, Dion V, Chariot A, Franzen R. Molecular mechanisms involved in Schwann cell plasticity. Frontiers Mol Neurosci 2017; 10:38; PMID:28261057; https://doi.org/10.3389/fnmol.2017.00038
  • Hood B, Levene HB, Levi AD. Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 2009; 26(2):E4; PMID:19435444; https://doi.org/10.3171/FOC.2009.26.2.E4
  • Walsh S, Midha R. Practical considerations concerning the use of stem cells for peripheral nerve repair. Neurosurgical Focus 2009; 26(2):E2; PMID:19435443; https://doi.org/10.3171/FOC.2009.26.2.E2
  • Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells 2015; 7(1):11; PMID:25621102; https://doi.org/10.4252/wjsc.v7.i1.11
  • Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 1999; 285(5428):754-6; PMID:10427001; https://doi.org/10.1126/science.285.5428.754
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4):663-76; PMID:16904174; https://doi.org/10.1016/j.cell.2006.07.024
  • Lee G, Chambers SM, Tomishima MJ, Studer L. Derivation of neural crest cells from human pluripotent stem cells. Nature Protocols 2010; 5(4):688-701; PMID:20360764; https://doi.org/10.1038/nprot.2010.35
  • Mimura T, Dezawa M, Kanno H, Sawada H, Yamamoto I. Peripheral nerve regeneration by transplantation of bone marrow stromal cell—derived Schwann cells in adult rats. J Neurosurg 2004; 101(5):806-12; PMID:15540919; https://doi.org/10.3171/jns.2004.101.5.0806
  • Cuevas P, Carceller F, Dujovny M, Garcia-Gómez I, Cuevas B, González-Corrochano R, Diaz-González D, Reimers D. Peripheral nerve regeneration by bone marrow stromal cells. Neurological Res 2002; 24(7):634-8; PMID:12392196; https://doi.org/10.1179/016164102101200564
  • Zarbakhsh S, Bakhtiyari M, Faghihi A, Joghataei MT, Mehdizadeh M, Khoei S, Mansouri K, Yousefi B, Pirhajati V, Moradi F, et al. The effects of schwann and bone marrow stromal stem cells on sciatic nerve injury in rat: a comparison of functional recovery. Cell J (Yakhteh) 2012; 14(1):39-46
  • Sieber–Blum M, Grim M, Hu Y, Szeder V. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dynamics 2004; 231(2):258-69; PMID:15366003; https://doi.org/10.1002/dvdy.20129
  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 2005; 102(49):17734-8; PMID:16314569; https://doi.org/10.1073/pnas.0508440102
  • Toma JG, Akhavan M, Fernandes KJ, Barnabé-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9):778-84; PMID:11533656; https://doi.org/10.1038/ncb0901-778
  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 2006; 26(24):6651-60; PMID:16775154; https://doi.org/10.1523/JNEUROSCI.1007-06.2006
  • Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007; 207(2):267-74; PMID:17761164; https://doi.org/10.1016/j.expneurol.2007.06.029