1,727
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Strategies and challenges for improving the performance of two-dimensional materials-based gas sensors

ORCID Icon, , , , , & show all
Article: 2288353 | Received 27 Sep 2023, Accepted 22 Nov 2023, Published online: 07 Dec 2023

References

  • Zhang J, Liu L, Yang Y, et al. A review on two-dimensional materials for chemiresistive- and FET-type gas sensors. Phys Chem Chem Phys. 2021;23:15420–15439. doi: 10.1039/d1cp01890f
  • Zhang D, Pan W, Tang M, et al. Diversiform gas sensors based on two-dimensional nanomaterials. Nano Res. 2023;16:11959–11991. doi: 10.1007/s12274-022-5233-2
  • Patil VL, Vanalakar SA, Patil PS, et al. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens Actuators B: Chem. 2017;239:1185–1193. doi: 10.1016/j.snb.2016.08.130
  • Kaneti YV, Benu DP, Xu XT, et al. Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem Rev. 2022;122:1000–1051. doi: 10.1021/acs.chemrev.1c00233
  • Mondal B, Gogoi PK. Nanoscale heterostructured materials based on metal oxides for a chemiresistive gas sensor. ACS Appl Electron Mater. 2022;4:59–86. doi: 10.1021/acsaelm.1c00841
  • Kaneti YV, Zhang ZJ, Yue J, et al. Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies. Phys Chem Chem Phys. 2014;16:11471–11480. doi: 10.1039/c4cp01279h
  • Ji H, Zeng W, Li Y. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale. 2019;11:22664–22684. doi: 10.1039/c9nr07699a
  • Septiani NLW, Shukri G, Saputro AG, et al. Palm sugar-induced formation of hexagonal tungsten oxide with nanorod-assembled three-dimensional hierarchical frameworks for nitrogen dioxide sensing. ACS Sustainable Chem Eng. 2022;10:15035–15045. doi: 10.1021/acssuschemeng.2c03315
  • Septiani NLW, Saputro AG, Kaneti YV, et al. Hollow zinc oxide microsphere-multiwalled carbon nanotube composites for selective detection of sulfur dioxide. ACS Appl Nano Mater. 2020;3:8982–8996. doi: 10.1021/acsanm.0c01707
  • Barbosa MS, Suman PH, Kim JJ, et al. Investigation of electronic and chemical sensitization effects promoted by Pt and Pd nanoparticles on single-crystalline SnO nanobelt-based gas sensors. Sens Actuators B: Chem. 2019;301:127055. doi: 10.1016/j.snb.2019.127055
  • Li Z, Li H, Wu Z, et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz. 2019;6:470–506. doi: 10.1039/c8mh01365a
  • Kim J-H, Mirzaei A, Kim HW, et al. Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens Actuators B: Chem. 2019;296:126659. doi: 10.1016/j.snb.2019.126659
  • Kanaparthi S, Singh SG. Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. Mater Sci Energy Technol. 2020;3:91–96. doi: 10.1016/j.mset.2019.10.010
  • Pham T, Li G, Bekyarova E, et al. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano. 2019;13:3196–3205. doi: 10.1021/acsnano.8b08778
  • Zhang D, Yu S, Wang X, et al. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J Hazard Mater. 2022;423:127160. doi: 10.1016/j.jhazmat.2021.127160
  • Wang D, Zhang D, Yang Y, et al. Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal–Organic Framework-Derived CuO Nanohybrid Ammonia Sensor. ACS Nano. 2021;15:2911–2919. doi: 10.1021/acsnano.0c09015
  • Akinwande D, Huyghebaert C, Wang C-H, et al. Graphene and two-dimensional materials for silicon technology. Nature. 2019;573:507–518. doi: 10.1038/s41586-019-1573-9
  • Zhu K, Pazos S, Aguirre F, et al. Hybrid 2D–CMOS microchips for memristive applications. Nature. 2023;618:57–62. doi: 10.1038/s41586-023-05973-1
  • Luo P, Zhuge F, Zhang Q, et al. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019;4:26–51. doi: 10.1039/c8nh00150b
  • Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev. 2018;47:3100–3128. doi: 10.1039/c8cs00024g
  • Feng ZH, Xie Y, Chen JC, et al. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 2017;4:025018. doi: 10.1088/2053-1583/aa57fe
  • Ahmed S, Sinha SK. Studies on nanomaterial-based p-type semiconductor gas sensors. Environ Sci Pollut Res. 2022;30:24975–24986. doi: 10.1007/s11356-022-21218-6
  • Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458
  • Wang QH, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech. 2012;7:699–712. doi: 10.1038/nnano.2012.193
  • Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotech. 2014;9:372–377. doi: 10.1038/nnano.2014.35
  • Dean CR, Young AF, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotech. 2010;5:722–726. doi: 10.1038/nnano.2010.172
  • Zhu H, Liu D. The synthetic strategies of metal–organic framework membranes, films and 2D MOFs and their applications in devices. J Mater Chem A. 2019;7:21004–21035. doi: 10.1039/c9ta05383b
  • Wang DY, Zhang DZ, Pan QN, et al. Gas sensing performance of carbon monoxide sensor based on rod-shaped tin diselenide/MOFs derived zinc oxide polyhedron at room temperature. Sens Actuators B: Chem. 2022;371:132481. doi: 10.1016/j.snb.2022.132481
  • Wei Y, Zhang P, Soomro RA, et al. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33:2103148. doi: 10.1002/adma.202103148
  • Kim HG, H-B-R L. Atomic layer deposition on 2D materials. Chem Mater. 2017;29(9):3809–3826. doi: 10.1021/acs.chemmater.6b05103
  • Huang Y, Pan Y-H, Yang R, et al. Universal mechanical exfoliation of large-area 2D crystals. Nat Commun. 2020;11:2453. doi: 10.1038/s41467-020-16266-w
  • Zhou J, Zhu C, Zhou Y, et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat Mater. 2023;22:450–458. doi: 10.1038/s41563-022-01291-5
  • Tan SM, Pumera M. Two-dimensional materials on the rocks: positive and negative role of dopants and impurities in electrochemistry. ACS Nano. 2019;13:2681–2728. doi: 10.1021/acsnano.8b07795
  • Agrawal AV, Kumar N, Kumar M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021;13:38. doi: 10.1007/s40820-020-00558-3
  • Park CO, Akbar SA. Ceramics for chemical sensing. J Mater Sci. 2003;38:4611–4637. doi: 10.1023/a:1027402430153
  • Majhi SM, Mirzaei A, Kim HW, et al. Recent advances in energy-saving chemiresistive gas sensors: a review. Nano Energy. 2021;79:105369. doi: 10.1016/j.nanoen.2020.105369
  • Das M, Roy S. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: a comprehensive review. Mater Sci Semicond Process. 2021;121:105332. doi: 10.1016/j.mssp.2020.105332
  • Perkins FK, Friedman AL, Cobas E, et al. Chemical vapor sensing with mono layer MoS2. Nano Lett. 2013;13:668–673. doi: 10.1021/nl3043079
  • Late DJ, Huang Y-K, Liu B, et al. Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano. 2013;7:4879–4891. doi: 10.1021/nn400026u
  • Chang C, Chen W, Chen Y, et al. Recent progress on two-dimensional materials. Acta Phys Chim Sin. 2021;37:210817. doi: 10.3866/pku.Whxb202108017
  • Feng ZH, Chen BY, Qian SB, et al. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der waals hetero-structure. 2d Mater. 2016;3:035021. doi: 10.1088/2053-1583/3/3/035021
  • Bag A, Lee N-E. Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J Mater Chem C. 2019;7:13367–13383. doi: 10.1039/c9tc04132j
  • Huo N, Yang S, Wei Z, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep. 2014;4:5209. doi: 10.1038/srep05209
  • Choi S-J, Kim I-D. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron Mater Lett. 2018;14:221–260. doi: 10.1007/s13391-018-0044-z
  • Wu Y, Joshi N, Zhao S, et al. NO2 gas sensors based on CVD tungsten diselenide monolayer. Appl Surf Sci. 2020;529:147110. doi: 10.1016/j.apsusc.2020.147110
  • Kumar S, Pavelyev V, Mishra P, et al. A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Mater Sci Semicond Process. 2020;107:104865. doi: 10.1016/j.mssp.2019.104865
  • Hou T, Zhou Q, Zeng W. Cr3-doped GaSe monolayer as an innovative sensor and scavenger for Cl2, NO, and SO2: a DFT study. J Mater Res Technol. 2022;19:4463–4472. doi: 10.1016/j.jmrt.2022.07.006
  • Gao J, Qin J, Chang J, et al. NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated system. ACS Appl Mater Interfaces. 2020;12:38674–38681. doi: 10.1021/acsami.0c10794
  • Qin C, Wang B, Wu N, et al. General strategy to fabricate porous Co-based bimetallic metal oxide nanosheets for high-performance CO sensing. ACS Appl Mater Interfaces. 2021;13:26318–26329. doi: 10.1021/acsami.1c03508
  • Park CH, Koo W-T, Lee YJ, et al. Hydrogen sensors based on MoS2 hollow architectures assembled by pickering emulsion. ACS Nano. 2020;14:9652–9661. doi: 10.1021/acsnano.0c00821
  • Umar A, Ammar HY, Kumar R, et al. Efficient H2 gas sensor based on 2D SnO2 disks: experimental and theoretical studies. Int J Hydrogen Energy. 2020;45:26388–26401. doi: 10.1016/j.ijhydene.2019.04.269
  • Kumar A, Sharma N, Gutal AP, et al. Growth and NO2 gas sensing mechanisms of vertically aligned 2D SnS2 flakes by CVD: experimental and DFT studies. Sens Actuators B: Chem. 2022;353:131078. doi: 10.1016/j.snb.2021.131078
  • Liu B, Chen L, Liu G, et al. High-performance chemical sensing using schottky-contacted chemical vapor deposition grown mono layer MoS2 transistors. ACS Nano. 2014;8:5304–5314. doi: 10.1021/nn5015215
  • Gu D, Li X, Wang H, et al. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens Actuators B: Chem. 2018;256:992–1000. doi: 10.1016/j.snb.2017.10.045
  • Yang S, Jiang C, Wei S-H. Gas sensing in 2D materials. Appl Phys Rev. 2017;4:021304. doi: 10.1063/1.4983310
  • Ma J, Zhang M, Dong L, et al. Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Adv. 2019;9:075207. doi: 10.1063/1.5099511
  • Guo X, Shi Y, Ding Y, et al. Indium-doping-induced selenium vacancy engineering of layered tin diselenide for improving room-temperature sulfur dioxide gas sensing. J Mater Chem A. 2022;10:22629–22637. doi: 10.1039/d2ta04317c
  • Tang H, Gao C, Yang H, et al. Room temperature ppt-level NO2 gas sensor based on SnO (x)/SnS nanostructures with rich oxygen vacancies. 2D Mater. 2021;8:045006. doi: 10.1088/2053-1583/ac13c1
  • Qin Z, Xu K, Yue H, et al. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens Actuators B: Chem. 2018;262:771–779. doi: 10.1016/j.snb.2018.02.060
  • Long H, Chan L, Harley-Trochimczyk A, et al. 3D MoS2 aerogel for ultrasensitive NO2 detection and its tunable sensing behavior. Adv Mater Interfaces. 2017;4:1700217. doi: 10.1002/admi.201700217
  • Ma X, Cai X, Yuan M, et al. Self-powered and flexible gas sensor using defect-engineered WS2/G heterostructure. Sens Actuators B: Chem. 2022;371:132523. doi: 10.1016/j.snb.2022.132523
  • Lv R, Chen G, Li Q, et al. Ultrasensitive gas detection of large-area boron-doped graphene. Proc Natl Acad Sci U S A. 2015;112:14527–14532. doi: 10.1073/pnas.1505993112
  • Zanjani SMM, Sadeghi MM, Holt M, et al. Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl Phys Lett. 2016;108:033106. doi: 10.1063/1.4940128
  • Liu C, Zhang Y, Hu J, et al. Defects suppression in MoS2 caused by W doped for enhanced response/recovery behaviors against NO2. Mater Lett. 2020;273:127961. doi: 10.1016/j.matlet.2020.127961
  • Chen X, Wang S, Su C, et al. Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens Actuators B: Chem. 2020;305:127393. doi: 10.1016/j.snb.2019.127393
  • Zhang D, Wang D, Pan W, et al. Construction and DFT study of Pd decorated WSe2 nanosheets for highly sensitive CO detection at room temperature. Sens Actuators B: Chem. 2022;360:131634. doi: 10.1016/j.snb.2022.131634
  • Gottam SR, Tsai C-T, Wang L-W, et al. Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite. Appl Surf Sci. 2020;506:144981. doi: 10.1016/j.apsusc.2019.144981
  • Suh JM, Shim Y-S, Kwon KC, et al. Pd- and Au-decorated MoS2 gas sensors for enhanced selectivity. Electron Mater Lett. 2019;15:368–376. doi: 10.1007/s13391-019-00128-9
  • Choi S-W, Kim J, Byun YT. Highly sensitive and selective NO2 detection by Pt nanoparticles-decorated single-walled carbon nanotubes and the underlying sensing mechanism. Sens. Actuators B: Chem. 2017;238:1032–1042. doi: 10.1016/j.snb.2016.07.153
  • Li Q, Chen D, Miao J, et al. Ag-modified 3D reduced graphene oxide aerogel-based sensor with an embedded microheater for a fast response and high-sensitive detection of NO2. ACS Appl Mater Interfaces. 2020;12:25243–25252. doi: 10.1021/acsami.9b22098
  • Kaneti YV, Yue J, Moriceau J, et al. Experimental and theoretical studies on noble metal decorated tin oxide flower-like nanorods with high ethanol sensing performance. Sens Actuators B: Chem. 2015;219:83–93. doi: 10.1016/j.snb.2015.04.136
  • Kaneti YV, Zhang X, Liu MS, et al. Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {1 0 -1 0} facets for butylamine sensing. Sens Actuators B: Chem. 2016;230:581–591. doi: 10.1016/j.snb.2016.02.091
  • Kaneti YV, Moriceau JL, Liu M, et al. Hydrothermal synthesis of ternary α-Fe2O3-ZnO-Au nanocomposites with high gas-sensing performance. Sens Actuators B: Chem. 2015;209:889–897. doi: 10.1016/j.snb.2014.12.065
  • Kim Y, Lee S, Song J-G, et al. 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor. Adv Funct Mater. 2020;30:2003360. doi: 10.1002/adfm.202003360
  • Cui S, Wen Z, Huang X, et al. Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small. 2015;11:2305–2313. doi: 10.1002/smll.201402923
  • Xia Y, Wang J, Xu J-L, et al. Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl Mater Interfaces. 2016;8:35454–35463. doi: 10.1021/acsami.6b12501
  • Xin X, Zhang Y, Guan X, et al. Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature. ACS Appl Mater Interfaces. 2019;11:9438–9447. doi: 10.1021/acsami.8b20984
  • Zhang L, Li Z, Liu J, et al. Optoelectronic gas sensor based on few-layered InSe nanosheets for NO2 detection with ultrahigh antihumidity ability. Anal Chem. 2020;92:11277–11287. doi: 10.1021/acs.analchem.0c01941
  • Zeng J, Niu Y, Gong Y, et al. All-dry transferred ReS2 nanosheets for ultrasensitive room-temperature NO2 sensing under visible light illumination. ACS Sens. 2020;5:3172–3181. doi: 10.1021/acssensors.0c01372
  • Kumar R, Goel N, Kumar M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017;2:1744–1752. doi: 10.1021/acssensors.7b00731
  • Wu E, Xie Y, Yuan B, et al. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 2018;3:1719–1726. doi: 10.1021/acssensors.8b00461
  • Wu E, Xie Y, Yuan B, et al. Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl Mater Interfaces. 2018;10:35664–35669. doi: 10.1021/acsami.8b14142
  • Zulkefli A, Mukherjee B, Sahara R, et al. Enhanced selectivity in volatile organic compound gas sensors based on ReS2-FETs under light-assisted and gate-bias tunable operation. ACS Appl Mater Interfaces. 2021;13:43030–43038. doi: 10.1021/acsami.1c10054
  • Chen A, Liu R, Peng X, et al. 2D hybrid nanomaterials for selective detection of NO2 and SO2 using “light on and off” strategy. ACS Appl Mater Interfaces. 2017;9:37191–37200. doi: 10.1021/acsami.7b11244
  • Wang H, Bai J, Dai M, et al. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens Actuators B: Chem. 2020;304:127287. doi: 10.1016/j.snb.2019.127287
  • Tian W, Li W, Yu W, et al. A review on lattice defects in graphene: types, generation, effects and regulation. Micromach. 2017;8:163. doi: 10.3390/mi8050163
  • Bai F, Xu L, Zhai X, et al. Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv Energy Materi. 2020;10:1902107. doi: 10.1002/aenm.201902107
  • Kumar R, Sahoo S, Joanni E, et al. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun. 2023;59:6109–6127. doi: 10.1039/d3cc00815k
  • Nan H, Zhou R, Gu X, et al. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale. 2019;11:19202–19213. doi: 10.1039/c9nr05522c
  • Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014;14:6275–6280. doi: 10.1021/nl502603d
  • Duan X, Wang C, Fan Z, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016;16:264–269. doi: 10.1021/acs.nanolett.5b03662
  • Singhal AV, Charaya H, Lahiri I. Noble metal decorated graphene-based gas sensors and their fabrication: a review. Crit Rev Solid State Mater Sci. 2017;42:499–526. doi: 10.1080/10408436.2016.1244656
  • Kim T, Lee TH, Park SY, et al. Drastic gas sensing selectivity in 2-dimensional MoS2 nanoflakes by noble metal decoration. ACS Nano. 2023;17:4404–4413. doi: 10.1021/acsnano.2c09733
  • Pham PV, Bodepudi SC, Shehzad K, et al. 2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges. Chem Rev. 2022;122:6514–6613. doi: 10.1021/acs.chemrev.1c00735
  • Novoselov KS, Mishchenko A, Carvalho A, et al. 2D materials and van der waals heterostructures. Science. 2016;353:aac9439. doi: 10.1126/science.aac9439