1,349
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Reconfigurable intelligent surfaces as the key-enabling technology for smart electromagnetic environments

ORCID Icon, , , , , , , , & show all
Article: 2299543 | Received 26 Oct 2023, Accepted 21 Dec 2023, Published online: 21 Jan 2024

References

  • Bariah L, Mohjazi L, Muhaidat S, et al. A prospective look: key enabling technologies, applications and Open Research Topics in 6G networks. IEEE Access. 2020;8:174792–174820. doi: 10.1109/ACCESS.2020.3019590
  • Zhang J, Björnson E, Matthaiou M, et al. Prospective multiple antenna technologies for beyond 5G. IEEE J Sel Areas Commun. 2020 Aug;38:1637–1660. doi: 10.1109/JSAC.2020.3000826
  • Jain IK, Kumar R, Panwar SS. The impact of mobile blockers on millimeter wave cellular systems. IEEE J Sel Areas Commun. 2019 Apr;37:854–868. doi: 10.1109/JSAC.2019.2898756
  • Ali Z, Duel-Hallen A, Hallen H. Early warning of mmWave signal blockage and AoA transition using sub-6 GHz observations. IEEE Commun Lett. 2020 Jan;24:207–211. doi: 10.1109/LCOMM.2019.2952602
  • Du J, Chizhik D, Feick R, et al. Suburban fixed wireless access channel measurements and models at 28 GHz for 90% outdoor coverage. IEEE Trans Antennas Propag. 2020 Jan;68:411–420.
  • Frank H, Colman-Meixner C, Assis KDR, et al. Techno-economic analysis of 5G non-public network architectures. IEEE Access. 2022;10:70204–70218. doi: 10.1109/ACCESS.2022.3187727
  • Chiaraviglio L, Cacciapuoti AS, Martino GD, et al. Planning 5G networks under EMF constraints: state of the art and vision. IEEE Access. 2018;6:51021–51037. doi: 10.1109/ACCESS.2018.2868347
  • Wu Q, Zhang S, Zheng B, et al. Intelligent reflecting surface-aided wireless communications: a tutorial. IEEE Trans Commun. 2021 May;69:3313–3351. doi: 10.1109/TCOMM.2021.3051897
  • Di Renzo M, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. J Wirel Com Netw. 2019 Dec;2019:1–20.
  • Yang F, Erricolo D, Massa A. Special issue on smart electromagnetic environment. IEEE Trans Antennas Propag. 2021;69:1838–1838.
  • Gradoni G, et al. Smart radio environments. 2021. arXiv:2111.08676
  • Barbuto M, et al. Metasurfaces 3.0: a new paradigm for enabling smart electromagnetic environments. IEEE Trans Antennas Propag. 2022 Oct;70:8883–8897.
  • Flamini R, De Donno D, Gambini J, et al. Toward a heterogeneous smart electromagnetic environment for millimeter-wave communications: an industrial viewpoint. IEEE Trans Antennas Propag. 2022 Oct;70:8898–8910.
  • Quevedo-Teruel O, Chen H, Díaz-Rubio A, et al. Roadmap on Metasurfaces. J Opt. 2019;21:073002. doi: 10.1088/2040-8986/ab161d
  • Di Renzo M, Zappone A, Debbah M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead. IEEE J Select Areas Commun. 2020 Nov;38:2450–2525.
  • Massa A, Benoni A, Da Ru P, et al. Designing smart electromagnetic environments for next-generation wireless communications. Telecom. 2021;2:213–221. doi: 10.3390/telecom2020014
  • Martini E, Maci S. Theory, analysis, and design of metasurfaces for smart radio environments. Proc IEEE. 2022 Sept;110:1227–1243. doi: 10.1109/JPROC.2022.3171921
  • Díaz-Rubio A, Kosulnikov S, Tretyakov SA. On the Integration of Reconfigurable Intelligent Surfaces in Real-World Environments: A Convenient Approach for Estimation Reflection and Transmission. IEEE Antennas Propag Mag. 2022 Aug;64:85–95. doi: 10.1109/MAP.2022.3169396
  • Oliveri G, Zardi F, Rocca P, et al. Building a smart EM environment - AI-Enhanced aperiodic micro-scale design of passive EM skins. IEEE Trans Antennas Propag. 2022 Oct;70:8757–8770.
  • Oliveri G, Salucci M, Massa A. Features and potentialities of static passive EM skins for NLOS specular wireless links. IEEE Trans Antennas Propag. 2023 Oct;71:8048–8060. doi: 10.1109/TAP.2023.3301654
  • Di Renzo M, Tretyakov S. Reconfigurable intelligent surfaces [scanning the issue]. Proc IEEE. 2022 Sept;110:1159–1163. doi: 10.1109/JPROC.2022.3194589
  • Barbuto M, Hamzavi-Zarghani Z, Longhi M, et al. Intelligence enabled by 2D metastructures in antennas and wireless propagation systems. IEEE Open J Antennas Propag. 2022;3:135–153. doi: 10.1109/OJAP.2021.3138617
  • Bilotti F, et al., “The role of intelligent metasurfaces in smart electromagnetic environments,” 2022 Sixteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), Siena, Italy, 2022, pp. X-064-X–066.
  • Luo F-L, Zhang C. Signal processing for 5G: algorithms and implementations. Wiley-IEEE Press; 2016.
  • Shan T, Li M, Xu S, et al. Phase synthesis of beam-scanning reflectarray antenna based on deep learning technique. Prog Electromagn Res. 2021;172:41–49. doi: 10.2528/PIER21091307
  • Shao S, Fan M, Yu C, et al. Machine learning-assisted sensing techniques for integrated communications and sensing in WLANs: Current status and future directions. Prog Electromagn Res. 2022;175:45–79. doi: 10.2528/PIER22042903
  • Li X, Yang HQ, Shao RW, et al. Low cost and high performance 5-bit programmable phased array antenna at ku-band. Prog Electromagn Res. 2022;175:29–43. doi: 10.2528/PIER22052806
  • Huang M, Zheng B, Li R, et al. Diffraction neural network for multi-source information of arrival sensing. Laser Photonics Rev. 2023;17:2300202. doi: 10.1002/lpor.202300202
  • Valagiannopoulos C, Sarsen A, Alù A. Angular memory of photonic metasurfaces. IEEE Trans Antennas Propag. 2021 Nov;69:7720–7728. doi: 10.1109/TAP.2021.3083806
  • Valagiannopoulos C. Multistability in coupled nonlinear metasurfaces. IEEE Trans Antennas Propag. 2022 July;70:5534–5540. doi: 10.1109/TAP.2022.3145455
  • Keren-Zur S, Michaeli L, Suchowski H, et al. Shaping light with nonlinear metasurfaces. Adv Opt Photon. 2018;10:309–353. doi: 10.1364/AOP.10.000309
  • da C Andrade EN. Doppler and the doppler effect. Endeavour. 1959;18:14–19. doi: 10.1016/0160-9327(59)90111-5
  • Gill TP. The Doppler effect: an introduction to the theory of the effect. Niagara Falls, NY, United States: Logos Press; 1965.
  • Chen VC, Li F, Ho SS, et al. Micro-doppler effect in radar: phenomenon, model, and simulation study. IEEE Trans Aerosp Electron Syst. 2006 Jan;42:2–21. doi: 10.1109/TAES.2006.1603402
  • Tse D, Pramod V. Fundamentals of wireless communication. Fundamentals Of Wireless Communication. 2005 Jan;9780521845274:1–564. doi: 10.1017/CBO9780511807213
  • Belwal N, Jethi GS, Juneja PK, et al., “Investigating the impact of doppler shift performance of multipath Rayleigh fading channel,” 2020 IEEE 5th International Conference on Computing Communication and Automation, ICCCA 2020, pp. 473–476, Oct. 2020, doi: 10.1109/ICCCA49541.2020.9250795
  • Wen ZR, He RS, Ai B, et al. Measurement and modeling of LTE-Railway channels in high-speed railway environment. Radio Sci. 2020 Apr;55:e2019RS007050.
  • Rodriguez-Pineiro J, et al., “LTE downlink performance in high speed trains,” IEEE Vehicular Technology Conference, vol. 2015, Jul. 2015, doi: 10.1109/VTCSPRING.2015.7145924
  • Fan P, Zhao J, Chih-Lin I. 5G high mobility wireless communications: challenges and solutions. China Commun. 2016;13:1–13. doi: 10.1109/CC.2016.7405718
  • Fan P. Advances in broadband wireless communications under high-mobility scenarios. Chinese Sci Bull. 2014 Dec;59:4974–4975. doi: 10.1007/s11434-014-0631-9
  • Ramaccia D, Bilotti F, Toscano A, et al., “Spatio-temporal modulated doppler cloak restores invisibility of moving cloaked objects,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, Jul. 2017, pp. 73–74. doi: 10.1109/APUSNCURSINRSM.2017.8072079
  • Ramaccia D, Sounas DL, Alu A, et al., “Metasurface-based Doppler cloaks: time-varying metasurface profile to achieve perfect frequency mixing,” in 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE, Aug. 2018, pp. 331–333. doi: 10.1109/MetaMaterials.2018.8534167
  • Ramaccia D, Sounas D, Alu A, et al., “Advancements in doppler cloak technology: manipulation of doppler effect and invisibility for moving objects,” in 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), IEEE, Sep. 2016, pp. 295–297. doi: 10.1109/MetaMaterials.2016.7746521
  • Ramaccia D, Bilotti F, Toscano A, et al., “Doppler cloaking based on time-varying metamaterials: theory and design,” in 2018 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, APSURSI 2018 - Proceedings, 2019. doi: 10.1109/APUSNCURSINRSM.2018.8608894
  • Ramaccia D, Alu A, Toscano A, et al., “Doppler Cloak: Concept and realistic implementation through space-time modulated metamaterials and time-modulated metasurfaces,” 14th European Conference on Antennas and Propagation, EuCAP 2020, Mar. 2020, doi: 10.23919/EUCAP48036.2020.9135280
  • Fang X, Li M, Ramaccia D, et al. Self-adaptive retro-reflective Doppler cloak based on planar space-time modulated metasurfaces. Appl Phys Lett. 2023 Jan;122:021702. doi: 10.1063/5.0132125
  • Ramaccia D, Sounas DL, Alù A, et al. Doppler cloak restores invisibility to objects in relativistic motion. Phys Rev B. 2017 Feb;95:075113. doi: 10.1103/PhysRevB.95.075113
  • Ramaccia D, Sounas DL, Alu A, et al. Phase-induced frequency conversion and doppler effect with Time-Modulated Metasurfaces. IEEE Trans Antennas Propag. 2020 Mar;68:1607–1617. doi: 10.1109/TAP.2019.2952469
  • Ramaccia D, Sounas DL, Alu A, et al. Frequency-shifted reflection achieved through time-varying metasurfaces. 2019 13th International Congress On Artificial Materials For Novel Wave Phenomena, Metamaterials 2019. 2019. doi: 10.1109/MetaMaterials.2019.8900849
  • Ramaccia D, Toscano A, Bilotti F, et al., “Time-modulated reflective metasurface for the control of the reflected signal frequency,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings, pp. 1611–1612, Jul. 2019, doi: 10.1109/APUSNCURSINRSM.2019.8888506
  • Liu B, Liu B, He Y, et al. Experimental demonstration of a time-domain digital-coding metasurface for a Doppler cloak. Opt Express. 2021 Jan;29:740–750. doi: 10.1364/OE.414408
  • Fang X, Li M, Ding D, et al. Design of in-phase and quadrature two paths space-time-modulated metasurfaces. IEEE Trans Antennas Propag. 2022 Jul;70:5563–5573. doi: 10.1109/TAP.2022.3145480
  • Zhang XG, Sun YL, Yu Q, et al. Smart doppler cloak operating in broad band and full polarizations. Adv Mater. 2021 Apr;33:2007966.
  • Liu G, Chen H, Sun X, et al. Modified MUSIC algorithm for DOA estimation with nyström approximation. IEEE Sens J. 2016 Jun;16:4673–4674. doi: 10.1109/JSEN.2016.2557488
  • Rocca P, Hannan MA, Salucci M, et al. Single-snapshot DoA estimation in array antennas with mutual coupling through a multiscaling BCS strategy. IEEE Trans Antennas Propag. 2017;65:3203–3213. doi: 10.1109/TAP.2017.2684137
  • Roy R, Kailath T. ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust. 1989;37:984–995. doi: 10.1109/29.32276
  • Cox H, Zeskind RM, Owen MM. Robust adaptive beamforming. IEEE Trans Acoust. 1987;35:1365–1376. doi: 10.1109/TASSP.1987.1165054
  • Zhou R, Zhang H, Xin H. Improved two-antenna direction finding inspired by human ears. IEEE Trans Antennas Propag. 2011 Jul;59:2691–2697. doi: 10.1109/TAP.2011.2152348
  • Liao B, Chan SC. Direction finding with partly calibrated uniform linear arrays. IEEE Trans Antennas Propag. 2012 Feb;60:922–929. doi: 10.1109/TAP.2011.2173144
  • Wagner M, Park Y, Gerstoft P. Gridless DOA Estimation and root-MUSIC for non-uniform linear arrays. IEEE Trans Signal Process. 2021;69:2144–2157. doi: 10.1109/TSP.2021.3068353
  • Li J, Wang Y, Ren Z, et al. DOA and range estimation using a uniform linear antenna array without a priori knowledge of the source number. IEEE Trans Antennas Propag. 2021 May;69:2929–2939. doi: 10.1109/TAP.2020.3030997
  • Fu H, Dai F, Hong L, “Two-dimensional off-grid DOA estimation with metasurface aperture based on MMV sparse bayesian learning,” IEEE Trans Instrum Meas, 2023, doi: 10.1109/TIM.2023.3318716
  • Chen S, Sima B, Xi F, et al., “Super-Resolution DOA estimation using dynamic metasurface antenna,” 14th European Conference on Antennas and Propagation, EuCAP 2020, Mar. 2020, doi: 10.23919/EUCAP48036.2020.9135485
  • Lin M, Xu M, Wan X, et al. Single sensor to estimate DOA with Programmable Metasurface. IEEE Internet Things J. 2021 Jun;8:10187–10197.
  • Huang M, Zheng B, Cai T, et al. Machine–learning-enabled metasurface for direction of arrival estimation. Nanophotonics. 2022 Apr;11:2001–2010.
  • Zhou QY, WU JW, Wang SR, etal. Two-dimensional direction-of-arrival estimation based on time-domain-coding digital metasurface. Appl Phys Lett. 2022 Oct;121: doi: 10.1063/5.0124291
  • Wang JW, Ai Huang Z, Xiao Q, et al. High-precision direction-of-arrival estimations using digital programmable metasurface. Adv Intell Syst. 2022 Apr;4:2100164.
  • Wang X, Caloz C, “Direction-of-arrival (DOA) estimation based on spacetime-modulated metasurface,” 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, APSURSI 2019 - Proceedings, pp. 1613–1614, Jul. 2019, doi: 10.1109/APUSNCURSINRSM.2019.8888325
  • Fang X, et al., “Low-complexity DoA estimation method based on space-time modulated metasurfaces,” 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, AP-S/URSI 2022 - Proceedings, pp. 1282–1283, 2022, doi: 10.1109/AP-S/USNC-URSI47032.2022.9886777
  • Fang X, Li M, Han J, et al. Accurate direction–of–arrival estimation method based on space–time modulated metasurface. IEEE Trans Antennas Propag. 2022 Nov;70:10951–10964.
  • Manley J, Rowe H. Some general properties of nonlinear elements-part I. General energy relations. Proc IRE. 1956 Jul;44:904–913. doi: 10.1109/JRPROC.1956.275145
  • Zhang L, Chen XQ, Liu S, et al. Space-time-coding digital metasurfaces. Nat Commun. 2018 Dec;9:4334.
  • Zang JW, Correas-Serrano D, Do JTS, et al. Nonreciprocal wavefront engineering with time-modulated gradient metasurfaces. Phys Rev Appl. 2019 May;11:054054.
  • Dai JY, Tang W, Yang LX, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans Antennas Propag. 2020 Mar;68:1618–1627.
  • Asadchy V, Díaz-Rubio A, Tcvetkova S, et al. Flat engineered multichannel reflectors. Phys Rev X. 2017;7:031046. doi: 10.1103/PhysRevX.7.031046
  • Wang X, Díaz-Rubio A, Tretyakov SA. Independent control of multiple channels in metasurface devices. Phys Rev Appl. 2020;14:024089. doi: 10.1103/PhysRevApplied.14.024089
  • Yin L-Z, Huang T-J, Han F-Y, et al. Terahertz multichannel metasurfaces with sparse unit cells. Opt Lett. 2019;44:1556. doi: 10.1364/OL.44.001556
  • Zhang L, et al. Space-time-coding digital metasurfaces. Nat Commun. 2018 Oct;9:1–11.
  • Castaldi G, Zhang L, Moccia M, et al. Joint multi-frequency beam shaping and steering via space–time-coding digital metasurfaces. Adv Funct Mater. 2021 Feb;31. Art. no. 2007620. doi: 10.1002/adfm.202007620
  • Yao AM, Wu W, Fang DG. Single-sideband time- modulated phased array. IEEE Trans Antennas Propag. 2015 May;63:1957–1968. doi: 10.1109/TAP.2015.2406890
  • Antonik P, Wicks MC, Griffiths HD, et al., “Frequency diverse array radars,” Proc. IEEE Conf. Radar, 2006, pp. 215–217.
  • Antonik P, Wicks MC, Griffiths HD, et al. Range-dependent beamforming using element level waveform diversity. Int Waveform Diversity Des Conf. 2006;1–6.
  • Ramaccia D, Sounas DL, Alu A, et al. Metasurface-based radar jammers and deceptors implemented through time-varying metasurfaces. 14th European Conference on Antennas and Propagation. 2020;1–2.
  • Wang J, Feng D, Xu Z, et al. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics. IEEE Trans Antennas Propag. 2021 Nov;69:3322–3331. doi: 10.1109/TAP.2020.3037757
  • Fang X, et al., “Diverse frequency time modulation for passive false target spoofing: design and experiment,” IEEE Transactions on Microwave Theory and Techniques (early access), 2023, doi: 10.1109/TMTT.2023.3305187
  • Li S, Wang J, Fang X, et al. Jamming of ISAR imaging with time-modulated metasurface partially covered on targets. IEEE Antennas Wirel Propag Lett. 2023 Feb;22:372–376. doi: 10.1109/LAWP.2022.3212923
  • Xu L, Feng D, Wang X. Matched-filter properties of linear-frequency-modulation radar signal reflected from a phase-switched screen. IET Radar Sonar Navigat. 2016 Feb;10:318–324. doi: 10.1049/iet-rsn.2015.0182
  • Herd JS, David Conway M. The evolution to modern phased array architectures. Proc IEEE. 2016 Mar;104:519–529. doi: 10.1109/JPROC.2015.2494879
  • Rocca P, Poli L, Polo A, et al. Optimal excitation matching strategy for sub-arrayed phased linear arrays generating arbitrary-shaped beams. IEEE Trans Antennas Propag. 2020 Jun;68:4638–4647. doi: 10.1109/TAP.2020.2972641
  • Guo CA, Guo YJ. A General approach for synthesizing multibeam antenna arrays employing generalized joined coupler matrix. IEEE Trans Antennas Propag. 2022 Sep;70:7556–7564. doi: 10.1109/TAP.2022.3153037
  • Mosca S, Bilotti F, Toscano A, et al. A novel design method for blass matrix beam-forming networks. IEEE Trans Antennas Propag. 2002 Feb;50:225–232. doi: 10.1109/8.997999
  • Stefanini L, Rech A, Ramaccia D, et al. Multibeam scanning antenna system based on beamforming metasurface for fast 5G NR initial access. IEEE Access. 2022 Jun;10:65982–65995.
  • Matos SA, Fonseca NJG, Serra JC, et al., “Generalized risley prism for beam-steering transmit-arrays with reduced grating lobes,” IEEE Trans Antennas Propag, pp. 1–1, Sep. 2023, doi: 10.1109/TAP.2023.3313230
  • Lima EB, Matos SA, Costa JR, et al. Circular polarization wide-angle beam steering at ka-band by in-plane translation of a plate lens antenna. IEEE Trans Antennas Propag. 2015 Dec;63:5443–5455. doi: 10.1109/TAP.2015.2484419
  • Kalvach A, Szabó Z. Aberration-free flat lens design for a wide range of incident angles. J Opt Soc Am B. 2016 Feb;33:A66–A71. doi: 10.1364/JOSAB.33.000A66
  • Vellucci S, Monti A, Barbuto M, et al. Progress and perspective on advanced cloaking metasurfaces: from invisibility to intelligent antennas. EPJ Appl Metamat. 2021 Jan;8:7. doi: 10.1051/epjam/2020013
  • Vellucci S, De Sibi D, Monti A, et al. Multi-layered coating metasurfaces enabling frequency reconfigurability in wire antenna. IEEE Open J Antennas Propag. 2022;3:206–216. doi: 10.1109/OJAP.2022.3143170
  • Vellucci S, Longhi M, Monti A, et al. Phase-gradient huygens metasurface coatings for dynamic beamforming in linear antennas. IEEE Trans Antennas Propag. 2023 Oct;71:7752–7765. doi: 10.1109/TAP.2023.3297193
  • Longhi M, et al., “Array synthesis of circular huygens metasurfaces for Antenna Beam-Shaping,” IEEE Antennas Wirel Propag Lett, doi: 10.1109/LAWP.2023.3315774
  • Vellucci S, Monti A, Barbuto M, et al. “Waveform-selective mantle cloaks for intelligent antennas. IEEE Trans Antennas Propag. 2020;68:1717–1725. doi: 10.1109/TAP.2019.2948736
  • Barbuto M, et al., “Smart Antennas 2.0,” 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 2023.
  • Vellucci S, Monti A, Barbuto M, et al., “Metasurface coatings enabling scattering, frequency, and radiation tunability for next-generation antenna systems,” 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 2022.
  • Vellucci S, et al., “Reconfigurability of wired antennas enabled by Conformal Metasurfaces,” 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 2023.
  • Monti A, Soric J, Alu A, et al. Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface. IEEE Antennas Wirel Propag Lett. 2012;11:1414–1417. doi: 10.1109/LAWP.2012.2229102
  • Vellucci S, Monti A, Barbuto M, et al. Satellite applications of electromagnetic cloaking. IEEE Trans Antennas Propag. 2017 Sep;65:4931–4934.
  • Monti A, Barbuto M, Toscano A, et al. Nonlinear mantle cloaking devices for power-dependent antenna arrays. IEEE Antennas Wirel Propag Lett. 2017;16:1727–1730. doi: 10.1109/LAWP.2017.2670025
  • Vellucci S, Monti A, Barbuto M, et al. On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas. IEEE Trans Antennas Propag. 2021 Aug;69:5048–5053.
  • Vellucci S, Longhi M, Monti A, et al., “Antenna pattern shaping through functionalized metasurface coatings,” in Proc. 16th Int. Congr. Artif. Mater. Novel Wave Phenomena (Metamaterials), pp. 466–468, Sep. 2022.
  • Pfeiffer C, Grbic A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett. 2013 May;110. Art. no. 197401. doi: 10.1103/PhysRevLett.110.197401
  • Selvanayagam M, Eleftheriades GV. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Exp. 2013;21:14409. Art. no. 14409. doi: 10.1364/OE.21.014409
  • Wakatsuchi H, Kim S, Rushton JJ, et al. Waveform dependent absorbing metasurfaces. Phys Rev Lett. 2013 Dec;111. Art. no. 245501. doi: 10.1103/PhysRevLett.111.245501
  • Wakatsuchi H, Anzai D, Rushton JJ, et al. Waveform selectivity at the same frequency. Sci Rep. 2015 Apr;5:9639. doi: 10.1038/srep09639
  • Wakatsuchi H, Long J, Sievenpiper DF. Waveform selective surfaces. Adv Funct Mater. 2019 Mar;29. Art. no. 1806386. doi: 10.1002/adfm.201806386
  • Vellucci S, Toscano A, Bilotti F, et al., “Towards waveform-selective cloaking devices exploiting circuit-loaded metasurfaces,” 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 2018, pp. 1861–1862.
  • Ushikoshi D, Higashiura R, Tachi K, et al. Pulse-driven self-reconfigurable meta-antennas. Nature Commun. 2023 Feb;14:633.
  • Vellucci S, et al., “Metasurface coatings enabling antenna reconfigurability for next-generation communications smart repeaters,” in Proc. 17th Int. Congr. Artif. Mater. Novel Wave Phenomena (Metamaterials), 2023.
  • Hannan P. The element-gain paradox for a phased-array antenna. IEEE Trans Antennas Propag. 1964 July;12:423–433. doi: 10.1109/TAP.1964.1138237
  • Cameron TR, Eleftheriades GV. Analysis and characterization of a wide-angle impedance matching metasurface for dipole phased arrays. IEEE Trans Antennas Propag. 2015;63:3928–3938. doi: 10.1109/TAP.2015.2448231
  • Cheng Y-F, Ding X, Shao W, et al. 2-D Planar wide-angle scanning-phased array based on wide-beam elements. IEEE Antennas Wirel Propag Lett. 2016;16:876–879. doi: 10.1109/LAWP.2016.2613130
  • Wen T-Q, Wang B-Z, Ding X. Wide-beam circularly polarized microstrip magnetic-electric dipole antenna for wide-angle scanning phased array. IEEE Antennas Wirel Propag Lett. 2017;16:428–431. doi: 10.1109/LAWP.2016.2582258
  • Yang G, Li J, Wei D, et al. Study on wide-angle scanning linear phased array antenna. IEEE Trans Antennas Propag. 2018;66:450–455. doi: 10.1109/TAP.2017.2761999
  • Liu C-M, X S-Q, Tu H-L, et al. Wide-angle scanning low profile phased array antenna based on a novel magnetic dipole. IEEE Trans Antennas Propag. 2017;65:1151–1162. doi: 10.1109/TAP.2016.2647711
  • Bai Y-Y, Xiao S, Tang M-C, et al. Wide-angle scanning phased array with pattern reconfigurable elements. IEEE Trans Antennas Propag. 2011;59:4071–4076. doi: 10.1109/TAP.2011.2164176
  • Xiao S, Zheng C, Li M, et al. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation. IEEE Trans Antennas Propag. 2015;63:2364–2369. doi: 10.1109/TAP.2015.2410311
  • Cheng Y-F, Ding X, Shao W, et al. A novel wide-angle scanning phased array based on dual-mode pattern-reconfigurable elements. IEEE Antennas Wirel Propag Lett. 2017;16:396–399. doi: 10.1109/LAWP.2016.2580624
  • Ding X, Cheng Y-F, Shao W, et al. A wide-angle scanning planar phased array with pattern reconfigurable magnetic Current element. IEEE Trans Antennas Propag. 2017;65:1434–1439. doi: 10.1109/TAP.2016.2637863
  • Gao G-F, Ding X, Cheng Y-F, et al. Dual-polarized wide-angle scanning phased array based on mutimode patch elements. IEEE Antennas Wirel Propag Lett. 2019;18:546–550. doi: 10.1109/LAWP.2019.2896197
  • Xia R-L, Qu S-W, Li P-F, et al. Wide-angle scanning phased array using an efficient decoupling network. IEEE Trans Antennas Propag. 2015;63:5161–5165. doi: 10.1109/TAP.2015.2476342
  • Li M, Xiao S-Q, Wang B-Z. Investigation of using high impedance surfaces for wide-angle scanning arrays. IEEE Trans Antennas Propag. 2015;63:2895–2901. doi: 10.1109/TAP.2015.2421936
  • Tang M-C, Chen Z, Wang H, et al. Mutual coupling reduction using meta-structures for wideband, dual-polarized, and high-density patch arrays. IEEE Trans Antennas Propag. 2017;65:3986–3998. doi: 10.1109/TAP.2017.2710214
  • Jin F-L, Ding X, Cheng Y-F, et al. Impedance matching design of a low-profile wide-angle scanning phased array. IEEE Trans Antennas Propag. 2019;67:6401–6409. doi: 10.1109/TAP.2019.2920287
  • Cameron TR, Eleftheriades GV. Experimental validation of a wideband metasurface for wide-angle scanning Leaky-Wave Antennas. IEEE Trans Antennas Propag. 2017;65:5245–5256. doi: 10.1109/TAP.2017.2735454
  • Bah AO, Qin P-W, Ziolkowski RW, et al. A wideband low-profile tightly coupled antenna array with a very high of merit. IEEE Trans Antennas Propag. 2019;67:2332–2343. doi: 10.1109/TAP.2019.2891460
  • Epstein A, Eleftheriades GV. Huygens’ metasurfaces via the equivalence principle: design and applications. J Opt Soc Am B. 2016;33:A31–A50. doi: 10.1364/JOSAB.33.000A31
  • Pfeiffer C, Emani NK, Shaltout AM, et al. Efficient light bending with isotropic metamaterial huygens’ surfaces. Nano Lett. 2014;14:2491–2497. doi: 10.1021/nl5001746
  • Wong JPS, Epstein A, Eleftheriades GV. Reflectionless wide angle refracting metasurfaces. IEEE Antennas Wirel Propag Lett. 2016;15:1293–1296. doi: 10.1109/LAWP.2015.2505629
  • Chen M, Abdo-Sánchez E, Epstein A, et al. Theory, design, and experimental verification of a reflectionless bianisotropic huygens’ metasurface for wide-angle refraction. Phys Rev B. 2018;97:125433. doi: 10.1103/PhysRevB.97.125433
  • Asadchy VS, Albooyeh M, Tcvetkova SN, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys Rev B. 2016;94:075142. doi: 10.1103/PhysRevB.94.075142
  • Monti A, Alù A, Toscano A, et al. Surface Impedance Modeling of All-dielectric Metasurface. IEEE Trans Antennas Propag. 2020;68:1799–1811. doi: 10.1109/TAP.2019.2951521
  • Monti A, Alù A, Toscano A, et al. Design of high-Q passband filters implemented through multipolar all-dielectric metasurfaces. IEEE Trans Antennas Propag. 2021;69:5142–5147. doi: 10.1109/TAP.2020.3045795
  • Li Z, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 2015;15:1615–1621. doi: 10.1021/nl5041572
  • Tsitsas NL, Valagiannopoulos CA. Anomalous reflection of visible light by all-dielectric gradient metasurfaces [invited. J Opt Soc Am B. 2017;34:D1–D8.
  • Wang X, Ding J, Zheng B, et al. Simultaneous realization of anomalous reflection and transmission at two frequencies using Bi-functional metasurfaces. Sci Rep. 2018;8:1876. doi: 10.1038/s41598-018-20315-2
  • Benini A, Martini E, Monni S, et al. Phase-gradient meta-dome for increasing grating-lobe-free scan range in phased arrays. IEEE Trans Antennas Propag. 2018;66:3973–3982. doi: 10.1109/TAP.2018.2835575
  • Eleftheriades GV, Vasileios MK, Ataloglou G, et al. Prospects of huygens’ metasurfaces for antenna applications. Eng. 2022;11:21–26. doi: 10.1016/j.eng.2021.05.011
  • Monti A, Vellucci S, Barbuto M, et al. Quadratic-gradient metasurface-dome for wide-angle beam steering phased array with reduced gain-loss at broadside. IEEE Trans Antennas Propag. 2023;71:2022–2027. doi: 10.1109/TAP.2022.3222716
  • Egorov GA, Eleftheriades GV. Theory and simulation of metasurface lenses for extending the angular scan range of phased arrays. IEEE Trans Antennas Propag. 2020;68:3705–3717. doi: 10.1109/TAP.2020.2969781
  • Egorov GA, Eleftheriades GV. Near-Field Angular Scan Enhancement of Antenna Arrays Using Metasurfaces. IEEE Trans Antennas Propag. 2023;71:2350–2362. doi: 10.1109/TAP.2022.3164137
  • Monti A, Soric JC, Alu A, et al. Anisotropic mantle cloaks for TM and TE scattering reduction. IEEE Trans Antennas Propag. 2015;63:1775–1788. doi: 10.1109/TAP.2015.2396532
  • Pozar DM. Microwave engineering. John Wiley & Sons Inc; 2011.
  • Pfeiffer C, Grbic A. Cascaded metasurfaces for complete phase and polarization control. Appl Phys Lett. 2013;102:231116. doi: 10.1063/1.4810873
  • Frickey DA. Conversions between S, Z,Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Tech. 1994;42:205–211. doi: 10.1109/22.275248
  • Epstein A, Eleftheriades GV. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Trans Antennas Propag. 2016;64:3880–3895. doi: 10.1109/TAP.2016.2588495
  • Monti A, et al., “Optimal design of huygens metasurfaces for oblique Incidence through a microwave network approach,” Proceedings of the 2022 Microwave Mediterranean Symposium (MMS), doi: 10.1109/MMS55062.2022.9825587
  • Monti A, Alù A, Toscano A, et al., “Design and applications of spatially-dispersive phase-gradient metasurfaces,” Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), doi: 10.23919/EuCAP57121.2023.10133796
  • Benoni A, Salucci M, Oliveri G, et al. Planning of EM skins for improved quality-of-service in urban areas. IEEE Trans Antennas Propag. 2022 Oct;70:8849–8862.
  • Barbuto M, Alù A, Bilotti F, et al. Composite vortex manipulation as a design tool for reflective intelligent surfaces. Antennas Wirel Propag Lett. 2023 Oct;22:2392–2396. doi: 10.1109/LAWP.2023.3288944
  • Galvez EJ, Smiley N, Fernandes N, “Composite optical vortices formed by collinear laguerre-gauss beams,” Proceedings of SPIE 6131 Nanomanipulation with Light, vol. 11, pp. 613105, 9 February 2006, doi: 10.1117/12.646074
  • Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–816. doi: 10.1038/nature01935
  • Lee JH, Foo G, Johnson EG, et al. Experimental verification of an optical vortex coronagraph. Phys Rev Lett. 2006;97(5). doi: 10.1103/PhysRevLett.97.053901
  • Barbuto M, Miri M-A, Alu A, et al. Exploiting the topological robustness of composite vortices in radiation systems. Prog Electromagn Res. 2018;162:39–50. doi: 10.2528/PIER18033006
  • Barbuto M, Miri M-A, Alù A, et al. A topological design tool for the synthesis of antenna radiation patterns. IEEE Trans Antennas Propag. 2020 March;68:1851–1859. doi: 10.1109/TAP.2019.2944533
  • Barbuto M, Alù A, Bilotti F, et al. Dual-circularly polarized topological patch antenna with pattern diversity. IEEE Access. 2021;9:48769–48776. doi: 10.1109/ACCESS.2021.3068792
  • Shifrin YS. Pioneer award: statistical antenna theory: formation and extension. IEEE Aerosp Electron Syst Mag. 2016 Aug;31:24–36. doi: 10.1109/MAES.2016.160032
  • Poli L, Rocca P, Anselmi N, et al. Dealing with uncertainties on phase weighting of linear antenna arrays by means of interval-based tolerance analysis. IEEE Trans Antennas Propag. 2015 Jul;63:3229–3234. doi: 10.1109/TAP.2015.2421952
  • Rocca P, Anselmi N, Benoni A, et al. Probabilistic interval analysis for the analytic prediction of the pattern tolerance distribution in linear phased arrays with random excitation errors. IEEE Trans Antennas Propag. 2020 Dec;68:7866–7878. doi: 10.1109/TAP.2020.2998924
  • Rocca P, Manica L, Anselmi N, et al. Analysis of the pattern tolerances in linear arrays with arbitrary amplitude errors. IEEE Antennas Wirel Propag Lett. 2013;12:639–642. doi: 10.1109/LAWP.2013.2261912
  • Ruze J. The effect of aperture errors on the antenna radiation pattern. Nuovo Cim. 1952 Mar;9:364–380. doi: 10.1007/BF02903409
  • Ruze J. Antenna tolerance theory—A review. Proc IEEE. 1966;54:633–640. doi: 10.1109/PROC.1966.4784
  • Stefanini L, et al., “Scattering performances of metasurfaces affected by electromagnetic phase roughness,” 2023 International Workshop on Antenna Technology, iWAT 2023, 2023, doi: 10.1109/IWAT57058.2023.10171787
  • Stefanini L, Ramaccia D, Toscano A, et al., “Scattering gain loss bounds for discretized reconfigurable intelligent surfaces,” 2023 17th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, Mar. 2023, doi: 10.23919/EUCAP57121.2023.10133046
  • Stefanini L, Ramaccia D, Toscano A, et al., “Characterization and compensation of RIS scattering gain loss due to electromagnetic phase roughness,” 2023 17th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, Mar. 2023, doi: 10.23919/EUCAP57121.2023.10133030
  • Movahediqomi M, Ptitcyn G, Tretyakov S, “Comparison between different designs and realizations of anomalous reflectors for extreme deflections,” IEEE Trans Antennas Propag, 2023, doi: 10.1109/TAP.2023.3301735
  • Patel AM, Grbic A. A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface. IEEE Trans Antennas Propag. 2011 Jun;59:2087–2096. doi: 10.1109/TAP.2011.2143668
  • Stefanini L, et al. A statistical approach for robust metasurfaces and metasurface-based RIS engineering. 2023 Oct. doi: 10.36227/TECHRXIV.24274411.V1