682
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Multidimensional soliton systems

Article: 2301592 | Received 18 Sep 2023, Accepted 28 Dec 2023, Published online: 21 Jan 2024

References

  • Makhankov VG, Rybakov YP, Sanyuk VI. The skyrme model: fundamentals, methods, applications. Berlin: Springer-Verlag; 1993.
  • Houghton CJ, Manton NS, Sutcliffe PM. Rational maps, monopoles and skyrmions. Nucl Phys B. 1998;510:507–537. doi: 10.1016/S0550-3213(97)00619-6
  • Manton N, Sutcliffe P. Topological solitons. Cambridge: Cambridge University Press; 2004.
  • Radu E, Volkov MS. Stationary ring solitons in field theory — knots and vortons. Phys Rep. 2008;468:101–151. doi: 10.1016/j.physrep.2008.07.002
  • Kartashov YV, Malomed BA, Shnir Y, et al. Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity. Phys Rev Lett. 2014;113:264101. doi: 10.1103/PhysRevLett.113.264101
  • Biondini G, Pelinovsky D. Kadomtsev-Petviashvili equation, Scholarpedia. Scholarpedia. 2008;3:6539. doi: 10.4249/scholarpedia.6539
  • Malomed BA. Multidimensional solitons. Melville, New York: AIP Publishing; 2022.
  • Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Phys Rep. 1998;303:259–370. doi: 10.1016/S0370-1573(97)00092-6
  • Sulem C, Sulem P-L. The nonlinear schrö dinger equation: self-focusing and wave collapse. New York: Springer; 1999.
  • Zakharov VE, Kuznetsov EA. Solitons and collapses: two evolution scenarios of nonlinear wave systems. Phys Usp. 2012;55:535–556. doi: 10.3367/UFNe.0182.201206a.0569
  • Fibich G. The nonlinear schrödinger equation: singular solutions and optical collapse. Heidelberg: Springer; 2015.
  • Kivshar YS, Agrawal GP. Optical solitons: from fibers to photonic crystals. San Diego: Academic Press; 2003.
  • Pitaevskii LP, Stringari S. Bose-Einstein condensation. Oxford: Oxford University Press; 2003.
  • Silberberg Y. Collapse of optical pulses. Opt Lett. 1990;15:1282–1284. doi: 10.1364/OL.15.001282
  • Abdullaev FK, Salerno M. Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices. Phys Rev A. 2005;72:033617. doi: 10.1103/PhysRevA.72.033617
  • Desaix M, Anderson D, Lisak M. Variational approach to collapse of optical pulses. J Opt Soc Am B. 1991;8:2082–2086. doi: 10.1364/JOSAB.8.002082
  • Zakharov VE, Shabat AB. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Zh. Eksp Teor Fiz. 1971;61:118–134. [English translation: J. Exp. Theor. Phys. 34, 62-69 (1972)].
  • Kanashov AA, Rubenchik AM. On diffraction and dispersion effect on three-wave interaction. Physica D. 1981;4:122–134. doi: 10.1016/0167-2789(81)90009-9
  • Hayata K, Koshiba M. Multidimensional solitons in quadratic nonlinear media. Phys Rev Lett. 1993;71:3275–3278. doi: 10.1103/PhysRevLett.71.3275
  • Turitsyn SK. Stability of 2-dimensional and 3-dimensional optical solitons in a media with quadratic nonlinearity. JETP Lett. 1995;61:469–472.
  • Malomed BA, Drummond P, He H, et al. Spatio-temporal solitons in optical media with a quadratic nonlinearity. Phys Rev E. 1997;56:4725–4735. doi: 10.1103/PhysRevE.56.4725
  • Torruellas WE, Wang Z, Hagan DJ, et al. Observation of two-dimensional spatial solitary waves in a Quadratic Medium. Phys Rev Lett. 1995;74:5036–5039. doi: 10.1103/PhysRevLett.74.5036
  • Liu X, Beckwitt K, Wise FW. Two-dimensional optical spatiotemporal solitons in quadratic media. Phys Rev E. 2000;62:1328–1340. doi: 10.1103/PhysRevE.62.1328
  • Vlasov SN, Petrishchev VA, Talanov VI. Izv Vyssh Uchebn Zaved Radiofiz. 1971;14:1353. [English translation: Radiophys. Quantum Electron. 14, 1062 (1971)]. doi: 10.1007/BF01029467.
  • Chiao RY, Garmire E, Townes CH. Self-trapping of optical beams. Phys Rev Lett. 1964;13:479–482. doi: 10.1103/PhysRevLett.13.479
  • Vakhitov NG, Kolokolov AA. Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Radi Quan Elec. 1973;16:783–789. doi: 10.1007/BF01031343
  • Chen C-A, Hung C-L. Observation of universal quench dynamics and Townes soliton formation from modulational instability in two-dimensional bose gases. Phys Rev Lett. 2020;125:250401. doi: 10.1103/PhysRevLett.125.250401
  • Bakkali-Hassani B, Maury C, Zhou Y-Q, et al. Realization of a Townes soliton in a two-component planar bose gas. Phys Rev Lett. 2021;127:023603. doi: 10.1103/PhysRevLett.127.023603
  • Chen C-A, Hung C-L. Observation of scale invariance in two-dimensional matter-wave Townes solitons. Phys Rev Lett. 2021;127:023604. doi: 10.1103/PhysRevLett.127.023604
  • Zdagkas A, McDonnell C, Deng J, et al. Observation of toroidal pulses of light. Nat Photon. 2022;16:523–528. doi: 10.1038/s41566-022-01028-5
  • Shen Y, Yu B, Wu H, et al. Topological transformation and free-space transport of photonic hopfions. Adv Phot. 2023;5:015001. doi: 10.1117/1.AP.5.1.015001
  • Dror N, Malomed BA. Symmetric and asymmetric solitons and vortices in linearly coupled two-dimensional waveguides with the cubic-quintic nonlinearity. Physica D. 2011;240:526–541. doi: 10.1016/j.physd.2010.11.001
  • Jhajj N, Larkin I, Rosenthal EW, et al. Spatiotemporal optical vortices. Phys Rev X. 2016;6:031037. doi: 10.1103/PhysRevX.6.031037
  • Chong A, Wan C, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics. 2020;14:350–354. doi: 10.1038/s41566-020-0587-z
  • Bliokh KY. Spatiotemporal vortex pulses: Angular momenta and spin-orbit interaction. Phys Rev Lett. 2021;126:243601. doi: 10.1103/PhysRevLett.126.243601
  • Porras MA. Transverse orbital angular momentum of spatiotemporal optical vortices, Progress in Electromagnetics Research. Prog Electromagn Res. 2023;177:95–105. doi: 10.2528/PIER23012203
  • Malomed BA. INVITED) vortex solitons: old results and new perspectives. Physica D. 2019;399:108–137. doi: 10.1016/j.physd.2019.04.009
  • Kruglov VI, Volkov VM, Vlasov RA, et al. Auto-waveguide propagation and the collapse of spiral light beams in non-linear media. J Phys A Math Gen. 1988;21:4381–4395. doi: 10.1088/0305-4470/21/23/020
  • Qin J, Dong G, Malomed BA. Stable giant vortex annuli in microwave-coupled atomic condensates. Phys Rev A. 2016;94:053611. doi: 10.1103/PhysRevA.94.053611
  • Firth WJ, Skryabin DV. Optical solitons carrying orbital angular momentum. Phys Rev Lett. 1997;79:2450–2453. doi: 10.1103/PhysRevLett.79.2450
  • Falcão Filho L, de Araújo CB, Boudebs G, et al. Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys Rev Lett. 2013;110:013901. doi: 10.1103/PhysRevLett.110.013901
  • Reyna AS, Boudebs G, Malomed BA, et al. Robust self-trapping of vortex beams in a saturable optical medium. Phys Rev A. 2016;93:013840. doi: 10.1103/PhysRevA.93.013840
  • Lee TD, Huang K, Yang CN. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys Rev. 1957;106:1135–1145. doi: 10.1103/PhysRev.106.1135
  • Petrov DS. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys Rev Lett. 2015;115:155302. doi: 10.1103/PhysRevLett.115.155302
  • Petrov DS, Astrakharchik GE. Ultradilute low-dimensional liquids. Phys Rev Lett. 2016;117:100401. doi: 10.1103/PhysRevLett.117.100401
  • Cabrera C, Tanzi L, Sanz J, et al. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science. 2018;359:301–304. doi: 10.1126/science.aao5686
  • Semeghini G, Ferioli G, Masi L, et al. Self-bound quantum droplets of atomic mixtures in free space? Phys Rev Lett. 2018;120:235301. doi: 10.1103/PhysRevLett.120.235301
  • D’Errico C, Burchianti A, Prevedelli M, et al. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys Rev Res. 2019;1:033155. doi: 10.1103/PhysRevResearch.1.033155
  • Li Y, Chen Z, Luo Z, et al. Two-dimensional vortex quantum droplets. Phys Rev A. 2018;98:063602. doi: 10.1103/PhysRevA.98.063602
  • Kartashov YV, Malomed BA, Tarruell L, et al. Three-dimensional droplets of swirling superfluids. Phys Rev A. 2018;98:013612. doi: 10.1103/PhysRevA.98.013612
  • Malomed BA, Mihalache D, Wise F, et al. Spatiotemporal optical solitons. J Optics B: Quant Semicl Opt. 2005;7:R53–R72. doi: 10.1088/1464-4266/7/5/R02
  • Kartashov YV, Malomed BA, Torner L. Solitons in nonlinear lattices. Rev Mod Phys. 2011;83:247–305. doi: 10.1103/RevModPhys.83.247
  • Malomed BA, Mihalache L, Wise F, et al. Viewpoint: on multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J Phys B At Mol Opt Phys. 2016;49:170502. doi: 10.1088/0953-4075/49/17/170502
  • Malomed BA. Multidimensional solitons: well-established results and novel findings. Eur Phys J Spec Top. 2016;225:2507–2532. doi: 10.1140/epjst/e2016-60025-y
  • Kartashov Y, Astrakharchik G, Malomed B, et al. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat Rev Phys. 2019;1:185–197. doi: 10.1038/s42254-019-0025-7
  • Luo Z-H, Pang W, Liu B, et al. A new form of liquid matter: quantum droplets. Front Phys. 2021;16:32501. doi: 10.1007/s11467-020-1020-2
  • Malomed BA. Multidimensional dissipative solitons and solitary vortices. Chaos, Solitons & Fractals. 2022;163:112526. doi: 10.1016/j.chaos.2022.112526
  • Hauke P, Cucchietti FM, Tagliacozzo L, et al. Can one trust quantum simulators? Rep Prog Phys. 2012;75:082401. doi: 10.1088/0034-4885/75/8/082401
  • Lin Y-J, Jiménez-García K, Spielman IB. Spin–orbit-coupled Bose–Einstein condensates. Nature. 2011;471:83–86. doi: 10.1038/nature09887
  • Galitski V, Spielman IB. Spin–orbit coupling in quantum gases. Nature. 2013;494:49–54. doi: 10.1038/nature11841
  • Campbell DL, Juzeliūnas G, Spielman IB. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms. Phys Rev A. 2011;84:025602. doi: 10.1103/PhysRevA.84.025602
  • Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Phys Rev. 1955;100:580–586. doi: 10.1103/PhysRev.100.580
  • Bychkov YA, Rashba EI. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C Solid State Phys. 1984;17:6039–6045. doi: 10.1088/0022-3719/17/33/015
  • Wu Z, Zhang L, Sun W, et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science. 2016;354:83–88. doi: 10.1126/science.aaf6689
  • Kawakami T, Mizushima T, Machida K. Textures oF F = 2 spinor Bose-Einstein condensates with spin-orbit coupling. Phys Rev A. 2011;84:011607(R. doi: 10.1103/PhysRevA.84.011607
  • Ramachandhran B, Opanchuk B, Liu X-J, et al. Half-quantum vortex state in a spin-orbit-coupled Bose-Einstein condensate. Phys Rev A. 2012;85:023606. doi: 10.1103/PhysRevA.85.023606
  • Sakaguchi H, Li B. Vortex lattice solutions to the Gross-Pitaevskii equation with spin-orbit coupling in optical lattices. Phys Rev A. 2013;87:015602. doi: 10.1103/PhysRevA.87.015602
  • Conduit GJ. Line of Dirac monopoles embedded in a Bose-Einstein condensate. Phys Rev A. 2012;86:021605(R. doi: 10.1103/PhysRevA.86.021605
  • Wu CJ, Mondragon-Shem I, Zhou X-F. Unconventional Bose—Einstein condensations from spin-orbit coupling. Chin Phys Lett. 2011;28:097102. doi: 10.1088/0256-307X/28/9/097102
  • Kawakami T, Mizushima T, Nitta M, et al. Stable skyrmions in SU(2) gauged Bose-Einstein condensates. Phys Rev Lett. 2012;109:015301. doi: 10.1103/PhysRevLett.109.015301
  • Sakaguchi H, Li B, Malomed BA. Creation of two-dimensional composite solitons in spin-orbit-coupled self-attractive Bose-Einstein condensates in free space. Phys Rev E. 2014;89:032920. doi: 10.1103/PhysRevE.89.032920
  • Salasnich L, Cardoso WB, Malomed BA. Localized modes in quasi-two-dimensional Bose-Einstein condensates with spin-orbit and Rabi couplings. Phys Rev A. 2014;90:033629. doi: 10.1103/PhysRevA.90.033629
  • Sakaguchi H, Malomed BA. Discrete and continuum composite solitons in Bose-Einstein condensates with the Rashba spin-orbit coupling in one and two dimensions. Phys Rev E. 2014;90:062922. doi: 10.1103/PhysRevE.90.062922
  • Sakaguchi H, Sherman EY, Malomed BA. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: effects of the Rashba-Dresselhaus coupling and the Zeeman splitting. Phys Rev E. 2016;94:032202. doi: 10.1103/PhysRevE.94.032202
  • Sakaguchi H, Li B, Sherman EY, et al. Composite solitons in two-dimensional spin-orbit coupled self-attractive Bose-Einstein condensates in free space. Roman Rep Phys. 2018;70:502.
  • Mardonov S, Sherman EY, Muga JG, et al. Collapse of spin-orbit-coupled Bose-Einstein condensates. Phys Rev A. 2015;91:043604. doi: 10.1103/PhysRevA.91.043604
  • Zhang Y-C, Zhou Z-W, Malomed BA, et al. Stable solitons in three dimensional free space without the ground state: self-trapped Bose-Einstein condensates with spin-orbit coupling. Phys Rev Lett. 2015b;115:253902. doi: 10.1103/PhysRevLett.115.253902
  • Sakaguchi H, Malomed BA. One- and two-dimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting. Phys Rev A. 2018;97:013607. doi: 10.1103/PhysRevA.97.013607
  • Landau LD, Lifshitz EM. Quantum mechanics: nonrelativistic theory. Moscow: Moscow (Nauka Publishers; 1974.
  • Manakov SV. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh Eksp Teor Fiz. 1973;65:505–516.
  • Zhou XF, Li Y, Cai Z, et al. Unconventional states of bosons with the synthetic spin–orbit coupling. J Phys B At Mol Opt Phys. 2013;46:134001. doi: 10.1088/0953-4075/46/13/134001
  • Bliokh KY, Rodríguez-Fortu Ña FJ, Nori F, et al. Spin–orbit interactions of light. Nat Photonics. 2015;9:796–808. doi: 10.1038/nphoton.2015.201
  • Liu G, Zhang X, Zhang X, et al. Spin-orbit rabi oscillations in optically synthesized magnetic fields. Light Sci Appl. 2023;12:205. doi: 10.1038/s41377-023-01238-8
  • Kartashov YV, Malomed BA, Konotop VV, et al. Stabilization of solitons in bulk Kerr media by dispersive coupling. Opt Lett. 2015;40:1045–1048. doi: 10.1364/OL.40.001045
  • Sakaguchi H, Malomed BA. One-and two-dimensional solitons in-symmetric systems emulating spin–orbit coupling. New J Phys. 2016;18:105005.
  • Chiang KS. Intermodal dispersion in two-core optical fibers. Opt Lett. 1995;20:997–999. doi: 10.1364/OL.20.000997
  • Chomaz L, Baier S, Petter D, et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys Rev X. 2016;6:041039. doi: 10.1103/PhysRevX.6.041039
  • Schmitt M, Wenzel M, Böttcher F, et al. Self-bound droplets of a dilute magnetic quantum liquid, nature. Nature. 2016;539:259–262. doi: 10.1038/nature20126
  • Mihalache D, Mazilu D, Crasovan L-C, et al. Stable spinning optical solitons in three dimensions. Phys Rev Lett. 2002;88:073902. doi: 10.1103/PhysRevLett.88.073902
  • Quiroga-Teixeiro M, Michinel H. Stable azimuthal stationary state in quintic nonlinear optical media. J Opt Soc Am B. 1997;14:2004–2009. doi: 10.1364/JOSAB.14.002004
  • Pego RL, Warchall HA. Spectrally stable encapsulated vortices for nonlinear Schrödinger equations. J Nonlinear Sci. 2002;12:347–394. doi: 10.1007/s00332-002-0475-3
  • Pushkarov KI, Pushkarov DI, Tomov IV. Self-action of light beams in nonlinear media: soliton solutions. Opt Quant Electr. 1979;11:471–478. doi: 10.1007/BF00620372
  • Brtka M, Gammal A, Malomed BA. Hidden vorticity in binary Bose-Einstein condensates. Phys Rev A. 2010;82:053610. doi: 10.1103/PhysRevA.82.053610
  • Li Y, Luo Z, Liu Y, et al. Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates. New J Phys. 2017b;19:113043. doi: 10.1088/1367-2630/aa983b
  • Cidrim A, dos Santos FEA, Henn EAL, et al. Vortices in self-bound dipolar droplets. Phys Rev A. 2018;98:023618. doi: 10.1103/PhysRevA.98.023618
  • Ferioli G, Semeghini G, Masi L, et al. Collisions of self-bound quantum droplets. Phys Rev Lett. 2019;122:090401. doi: 10.1103/PhysRevLett.122.090401
  • Pan KL, Law CK, Zhou B. Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J Appl Phys. 2008;103:06490. doi: 10.1063/1.2841055
  • Krupa K, Tonello A, Barthélémy A, et al. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics. 2019;4:110901. doi: 10.1063/1.5119434
  • Ma M, Lian Y, Wang Y, et al. Generation, transmission and application of orbital angular momentum in optical fiber: a review. Front Phys. 2021;9:773505. doi: 10.3389/fphy.2021.773505
  • Bandres MA, Rechtsman MC, Segev M. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys Rev X. 2016;6:011016. doi: 10.1103/PhysRevX.6.011016
  • Smirnova D, Leykam D, Chong YD, et al. Nonlinear topological photonics. Appl Phys Rev. 2020;7:021306. doi: 10.1063/1.5142397
  • Wang P, Zheng Y, Chen X, et al. Localization and delocalization of light in photonic moiré lattices. Nature (London). 2020;577:42–46. doi: 10.1038/s41586-019-1851-6
  • Fu Q, Wang P, Huang C, et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat Photonics. 2020;14:663–668. doi: 10.1038/s41566-020-0679-9
  • Kartashov YV, Ye F, Konotop VV, et al. Multifrequency solitons in commensurate-incommensurate photonic moiré lattices. Phys Rev Lett. 2021;127:163902. doi: 10.1103/PhysRevLett.127.163902
  • Kartashov YV. Light bullets in moiré lattices. Opt Lett. 2022;47:4528–4531. doi: 10.1364/OL.471022
  • Ivanov SK, Konotop VV, Kartashov YV, et al. Vortex solitons in moiré optical lattices. Opt Lett. 2023;48:3797–3800. doi: 10.1364/OL.494681
  • Arkhipova AA, Kartashov YV, Ivanov SK, et al. Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys Rev Lett. 2023;130:083801. doi: 10.1103/PhysRevLett.130.083801
  • Liu X, Zeng J. Gap solitons in parity–time symmetric moiré optical lattices. Photonics Res. 2023;11:196–202. doi: 10.1364/PRJ.474527
  • Liu X, Zeng J. Matter-wave gap solitons and vortices of dense Bose-Einstein condensates in moiré optical lattices. Chaos, Solitons & Fractals. 2023;174:113869. doi: 10.1016/j.chaos.2023.113869
  • Li Z-Y, Li J-H, Zhao Y, et al. Robust light bullets in Rydberg gases with moiré lattice. Results Phys. 2023;53:106990. doi: 10.1016/j.rinp.2023.106990
  • Sakaguchi H, Malomed BA. Gap solitons in quasiperiodic optical lattices. Phys Rev E. 2006;74:026601. doi: 10.1103/PhysRevE.74.026601