679
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Ramsey interferometry with cold atoms in coherent population trapping

, &
Article: 2317896 | Received 30 Oct 2023, Accepted 08 Feb 2024, Published online: 23 Feb 2024

References

  • Arimondo E, Orriols G. Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping. Lett Nuovo Cimento. 1976;17:333–338. doi: 10.1007/BF02746514
  • Whitley RM, Stroud CR. Double optical resonance. Phys Rev A. 1976;14:1498–1513. doi: 10.1103/PhysRevA.14.1498
  • Alzetta G, Adriano G, Luigi M, et al. An experimental method for the observation of r.F. transitions and laser beat resonances in oriented na vapour. Il Nuovo Cimento B (1971-1996). 1976;36:5–20. doi: 10.1007/BF02749417
  • Vanier J. Atomic clocks based on coherent population trapping: a review. Appl Phys B. 2005;81:421–442. doi: 10.1007/s00340-005-1905-3
  • Jamonneau P, Hétet G, Dréau A, et al. Coherent population trapping of a single nuclear spin under ambient conditions. Phys Rev Lett. 2016;116:043603. doi: 10.1103/PhysRevLett.116.043603
  • Donarini A, Niklas M, Schafberger M, et al. Coherent population trapping by dark state formation in a carbon nanotube quantum dot. Nat Commun. 2019;10:381. doi: 10.1038/s41467-018-08112-x
  • Kelly WR, Dutton Z, Schlafer J, et al. Direct observation of coherent population trapping in a superconducting artificial atom. Phys Rev Lett. 2010;104:163601. doi: 10.1103/PhysRevLett.104.163601
  • Aspect A, Arimondo E, Kaiser R, et al. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys Rev Lett. 1988;61:826–829. doi: 10.1103/PhysRevLett.61.826
  • Hafiz MA, Boudot R. A coherent population trapping cs vapor cell atomic clock based on push-pull optical pumping. J Appl Phys. 2015;118:124903. doi: 10.1063/1.4931768
  • Hafiz MA, Coget G, Yun P, et al. A high-performance raman-ramsey cs vapor cell atomic clock. J Appl Phys. 2017;121:104903. doi: 10.1063/1.4977955
  • Warren Z, Shahriar MS, Tripathi R, et al. Experimental and theoretical comparison of different optical excitation schemes for a compact coherent population trapping Rb vapor clock. Metrologia. 2017;54:418. doi: 10.1088/1681-7575/aa72bb
  • Lin H, Tian Y, Chen J, et al. Experimental study of the application feasibility of a novel chip-scale atomic clock scheme. Rev Sci Instrum. 2019;90:053111. doi: 10.1063/1.5086319
  • Cheng P-F, Zhang J-W, Wang L-J. Ramsey-coherent population trapping Cs atomic clock based on lin∥lin optical pumping with dispersion detection. Chin Phys B. 2019;28:070601. doi: 10.1088/1674-1056/28/7/070601
  • Yun P, Li Q, Hao Q, et al. High-performance coherent population trapping atomic clock with direct-modulation distributed bragg reflector laser. Metrologia. 2021;58:045001. doi: 10.1088/1681-7575/abffde
  • Liu X, Yudin VI, Taichenachev AV, et al. High contrast dark resonances in a cold-atom clock probed with counterpropagating circularly polarized beams. Appl Phys Lett. 2017;111:224102. doi: 10.1063/1.5001179
  • Liu X, Ivanov E, Yudin VI, et al. Low-drift coherent population trapping clock based on laser-cooled atoms and high-coherence excitation fields. Phys Rev Appl. 2017;8:054001. doi: 10.1103/PhysRevApplied.8.054001
  • Liu X, Ru N, Duan J, et al. High-performance coherent population trapping clock based on laser-cooled atoms. Chin Phys B. 2022;31:043201. doi: 10.1088/1674-1056/ac2d21
  • Elvin R, Hoth GW, Wright M, et al. Cold-atom clock based on a diffractive optic. Opt Express. 2019;27:38359–38366. doi: 10.1364/OE.378632
  • Scully MO, Fleischhauer M. High-sensitivity magnetometer based on index-enhanced media. Phys Rev Lett. 1992;69:1360–1363. doi: 10.1103/PhysRevLett.69.1360
  • Schwindt PDD, Knappe S, Shah V, et al. Chip-scale atomic magnetometer. Appl Phys Lett. 2004;85:6409–6411. doi: 10.1063/1.1839274
  • Nagel A, Graf L, Naumov A, et al. Experimental realization of coherent dark-state magnetometers. Europhys Lett. 1998;44:31. doi: 10.1209/epl/i1998-00430-0
  • Tripathi R, Pati GS. Magnetic field measurement using peak-locked zeeman coherent population trapping resonance in rubidium vapor. IEEE Photonics J. 2019;11:1–10. doi: 10.1109/JPHOT.2019.2922831
  • Liang S-Q, Yang G-Q, Xu Y-F, et al. Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer. Opt Express. 2014;22:6837–6843. doi: 10.1364/OE.22.006837
  • Zhang F, Tian Y, Zhang Y, et al. Coherent population trapping magnetometer by differential detecting magneto–optic rotation effect. Chin Phys B. 2016;25:094206. doi: 10.1088/1674-1056/25/9/094206
  • Ramsey NF. A molecular beam resonance method with separated oscillating fields. Phys Rev. 1950;78:695–699. doi: 10.1103/PhysRev.78.695
  • Cronin AD, Schmiedmayer J, Pritchard DE. Optics and interferometry with atoms and molecules. Rev Mod Phys. 2009;81:1051–1129. doi: 10.1103/RevModPhys.81.1051
  • Zanon-Willette T, Lefevre R, Metzdorff R, et al. Composite laser-pulses spectroscopy for high-accuracy optical clocks: a review of recent progress and perspectives. Rep Prog Phys. 2018;81:094401. doi: 10.1088/1361-6633/aac9e9
  • Sanner C, Huntemann N, Lange R, et al. Autobalanced Ramsey spectroscopy. Phys Rev Lett. 2018;120:053602. doi: 10.1103/PhysRevLett.120.053602
  • Yudin VI, Taichenachev AV, Basalaev MY, et al. Generalized autobalanced Ramsey spectroscopy of clock transitions. Phys Rev Appl. 2018;9:054034. doi: 10.1103/PhysRevApplied.9.054034
  • Hafiz MA, Coget G, Petersen M, et al. Symmetric autobalanced Ramsey interrogation for high-performance coherent-population-trapping vapor-cell atomic clock. Appl Phys Lett. 2018;112:244102. doi: 10.1063/1.5030009
  • Yudin VI, Taichenachev AV, Oates CW, et al. Hyper-ramsey spectroscopy of optical clock transitions. Phys Rev A. 2010;82:011804. doi: 10.1103/PhysRevA.82.011804
  • Hobson R, Bowden W, King SA, et al. Modified hyper-ramsey methods for the elimination of probe shifts in optical clocks. Phys Rev A. 2016;93:010501. doi: 10.1103/PhysRevA.93.010501
  • Zanon-Willette T, Yudin VI, Taichenachev AV. Generalized hyper-ramsey resonance with separated oscillating fields. Phys Rev A. 2015;92:023416. doi: 10.1103/PhysRevA.92.023416
  • Zanon T, Guerandel S, Clercq E, et al. High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system. Phys Rev Lett. 2005;94:193002. doi: 10.1103/PhysRevLett.94.193002
  • Yun P, Zhang Y, Liu G, et al. Multipulse ramsey-CPT interference fringes for the 87Rb clock transition. Europhys Lett. 2012;97:63004. doi: 10.1209/0295-5075/97/63004
  • Warren Z, Shahriar MS, Tripathi R, et al. Pulsed coherent population trapping with repeated queries for producing single-peaked high contrast Ramsey interference. J Appl Phys. 2018;123:053101. doi: 10.1063/1.5008402
  • Fang R, Han C, Jiang X, et al. Temporal analog of Fabry-Pérot resonator via coherent population trapping. Npj Quantum Inf. 2021;7:1–7. doi: 10.1038/s41534-021-00479-y
  • Taichenachev AV, Yudin VI, Velichansky LV, et al. On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of 87Rb. JETP Lett. 2005;82:398–403. doi: 10.1134/1.2142864
  • Jau YY, Miron E, Post AB, et al. Push-pull optical pumping of pure superposition states. Phys Rev Lett. 2004;93:160802. doi: 10.1103/PhysRevLett.93.160802
  • Watabe K, Ikegami T, Takamizawa A, et al. High-contrast dark resonances with linearly polarized light on the D1 line of alkali atoms with large nuclear spin. Appl Opt. 2009;48:1098–1103. doi: 10.1364/AO.48.001098
  • Breschi E, Kazakov G, Lammegger R, et al. Quantitative study of the destructive quantum-interference effect on coherent population trapping. Phys Rev A. 2009;79:063837. doi: 10.1103/PhysRevA.79.063837
  • Taichenachev AV, Yudin VI, Velichansky VL, et al. High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves. JETP Lett. 2004;80:236–240. doi: 10.1134/1.1813678
  • Lin H, Shang K, Tian Y, et al. Analytical function study of ramsey-CPT interference fringe with experimental verification. J Phys B At Mol Opt Phys. 2020;53:115401. doi: 10.1088/1361-6455/ab793c
  • Shahriar MS, Wang Y, Krishnamurthy S, et al. Evolution of an n-level system via automated vectorization of the liouville equations and application to optically controlled polarization rotation. J Mod Opt. 2013;61:351–367. doi: 10.1080/09500340.2013.865806
  • Hemmer PR, Ontai GP, Ezekiel S. Precision studies of stimulated-resonance raman interactions in an atomic beam. J Opt Soc Am B. 1986;3:219–230. doi: 10.1364/JOSAB.3.000219
  • Zanon-Willette T, Clercq E, Arimondo E. Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime. Phys Rev A. 2011;84:062502. doi: 10.1103/PhysRevA.84.062502
  • Fang R, Han C, Lu B, et al. Ramsey interferometry with arbitrary coherent-population-trapping pulse sequence. Phys Rev A. 2023;108:043721. doi: 10.1103/PhysRevA.108.043721
  • Kargapoltsev SV, Kitching J, Hollberg L, et al. High-contrast dark resonance in σ+-σ-optical field. Laser Phys Lett. 2004;1:495.
  • Thomas JE, Hemmer PR, Ezekiel S, et al. Observation of Ramsey fringes using a stimulated, resonance raman transition in a sodium atomic beam. Phys Rev Lett. 1982;48:867–870. doi: 10.1103/PhysRevLett.48.867
  • Hemmer PR, Ezekiel S, Leiby CC. Stabilization of a microwave oscillator using a resonance raman transition in a sodium beam. Opt Lett. 1983;8:440–442. doi: 10.1364/OL.8.000440
  • Shahriar MS, Hemmer PR. Direct excitation of microwave-spin dressed states using a laser-excited resonance raman interaction. Phys Rev Lett. 1990;65:1865–1868. doi: 10.1103/PhysRevLett.65.1865
  • Robyr J-L, Knowles P, Weis A. Weis a stark shift of the cs clock transition frequency: a new experimental approach. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:613–617. doi: 10.1109/TUFFC.2010.1455
  • Li C, Chai X, Wei B, et al. Cascaded collimator for atomic beams traveling in planar silicon devices. Nat Commun. 2019;10:1831. doi: 10.1038/s41467-019-09647-3
  • Martinez G, Li C, Staron A, et al. A chip-scale atomic beam clock. Nat Commun. 2023;14:3501. doi: 10.1038/s41467-023-39166-1
  • Lu ZT, Corwin KL, Renn MJ, et al. Low-velocity intense source of atoms from a magneto-optical trap. Phys Rev Lett. 1996;77:3331–3334. doi: 10.1103/PhysRevLett.77.3331
  • Dieckmann K, Spreeuw RJC, Weidemüller M, et al. Two-dimensional magneto-optical trap as a source of slow atoms. Phys Rev A. 1998;58:3891–3895. doi: 10.1103/PhysRevA.58.3891
  • Elgin JD, Heavner TP, Kitching J, et al. A cold-atom beam clock based on coherent population trapping. Appl Phys Lett. 2019;115:033503. doi: 10.1063/1.5087119
  • Feng Y, Xue H, Wang X, et al. Observation of Ramsey fringes using stimulated Raman transitions in a laser-cooled continuous rubidium atomic beam. Appl Phys B. 2015;118:139–144. doi: 10.1007/s00340-014-5962-3
  • Pati GS, Salit K, Tripathi R, et al. Demonstration of Raman–Ramsey fringes using time delayed optical pulses in rubidium vapor. Opt Commun. 2008;281:4676–4680. doi: 10.1016/j.optcom.2008.05.056
  • Baryshev VN, Osipenko GV, Aleinikov MS, et al. Raman–Ramsey pulsed excitation of coherent population trapping resonances in a 87 Rb cell with a buffer gas. Quantum Electron. 2019;49:283. doi: 10.1070/QEL16875
  • Esnault F-X, Blanshan E, Ivanov EN, et al. Cold-atom double-Λ coherent population trapping clock. Phys Rev A. 2013;88:042120. doi: 10.1103/PhysRevA.88.042120
  • Chen X, Yang G-Q, Wang J, et al. Coherent population trapping-ramsey interference in cold atoms. Chin Phys Lett. 2010;27:113201. doi: 10.1088/0256-307X/27/11/113201
  • Blanshan E, Rochester SM, Donley EA, et al. Light shifts in a pulsed cold-atom coherent-population-trapping clock. Phys Rev A. 2015;91:041401. doi: 10.1103/PhysRevA.91.041401
  • Shuker M, Pollock JW, Boudot R, et al. Ramsey spectroscopy with displaced frequency jumps. Phys Rev Lett. 2019;122:113601. doi: 10.1103/PhysRevLett.122.113601
  • Xu BM, Chen X, Wang J, et al. Realization of a single-beam mini magneto-optical trap: a candidate for compact CPT cold atom-clocks. Opt Commun. 2008;281:5819–5823. doi: 10.1016/j.optcom.2008.08.012
  • Lee J, Ding R, Christensen J, et al. A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system. Nat Commun. 2022;13:5131. doi: 10.1038/s41467-022-31410-4
  • Hafiz MA, Coget G, Clercq E, et al. Doppler-free spectroscopy on the Cs D1 line with a dual-frequency laser. Opt Lett. 2016;41:2982–2985. doi: 10.1364/OL.41.002982
  • Taek J, Han SM. Laser frequency stabilization using bichromatic crossover spectroscopy. J Appl Phys. 2015;117:093102. doi: 10.1063/1.4913880
  • Genov G, Lellinger TE, Halfmann T, et al. Laser frequency stabilization by bichromatic saturation absorption spectroscopy. J Opt Soc Am B. 2017;34:2018–2030. doi: 10.1364/JOSAB.34.002018
  • Zhao M, Jiang X, Fang R, et al. Laser frequency stabilization via bichromatic doppler-free spectroscopyof an 87Rb D1 line. Appl Opt. 2021;60:5203–5207. doi: 10.1364/AO.425694
  • Cooper N, Madkhaly S, Johnson D, et al. Dual-frequency doppler-free spectroscopy for simultaneous laser stabilization in compact atomic physics experiments. Phys Rev A. 2023;108:013521. doi: 10.1103/PhysRevA.108.013521
  • Nshii CC, Vangeleyn M, Cotter JP, et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nat Nanotech. 2013;8:321–324. doi: 10.1038/nnano.2013.47
  • Chen L, Huang C-J, Xu X-B, et al. Planar-integrated magneto-optical trap. Phys Rev Appl. 2022;17:034031. doi: 10.1103/PhysRevApplied.17.034031
  • Dyer S, Gallacher K, Hawley U, et al. Chip-scale packages for a tunable wavelength reference and laser cooling platform. Phys Rev Appl. 2023;19:044015. doi: 10.1103/PhysRevApplied.19.044015
  • Zhu L, Liu X, Sain B, et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci Adv. 2020;6:eabb6667. doi: 10.1126/sciadv.abb6667
  • Jin M, Zhang X, Liu X, et al. A centimeter-scale dielectric metasurface for the generation of cold atoms. Nano Lett. 2023;23:4008–4013. doi: 10.1021/acs.nanolett.3c00791
  • Ropp C, Zhu W, Yulaev A, et al. Integrating planar photonics for multi-beam generation and atomic clock packaging on chip. Light Sci Appl. 2023;12:83. doi: 10.1038/s41377-023-01081-x
  • Isichenko A, Chauhan N, Bose D, et al. Photonic integrated beam delivery in a rubidium 3D magneto-optical trap. Nat Commun. 2023;14:3080. doi: 10.1038/s41467-023-38818-6
  • Chuchelov DS, Tsygankov EA, Zibrov SA, et al. Central Ramsey fringe identification by means of an auxiliary optical field. J Appl Phys. 2019;126:054503. doi: 10.1063/1.5111312
  • Hafiz MA, Coget G, Petersen M, et al. Toward a high-stability coherent population trapping cs vapor-cell atomic clock using autobalanced ramsey spectroscopy. Phys Rev Appl. 2018;9:064002. doi: 10.1103/PhysRevApplied.9.064002
  • Shuker M, Pollock JW, Boudot R, et al. Reduction of light shifts in Ramsey spectroscopy with a combined error signal. Appl Phys Lett. 2019;114:141106. doi: 10.1063/1.5093921
  • Li X, Shi Y, Xue H, et al. Atomic magnetometer with microfabricated vapor cells based on coherent population trapping. Chin Phys B. 2021;30:030701. doi: 10.1088/1674-1056/abc2b9
  • Cheng B, Zhou B, Magnes W, et al. High precision magnetometer for geomagnetic exploration onboard of the china seismo-electromagnetic satellite. Sci China Technol Sci. 2018;61:659–668. doi: 10.1007/s11431-018-9247-6
  • Chen S, Zhuang M, Fang R, et al. Quantum double lock-in amplifier. arXiv: 2303.07559. 2023;2023.
  • Said RS, Berry DW, Twamley J. Nanoscale magnetometry using a single-spin system in diamond. Phys Rev B. 2011;83:125410. doi: 10.1103/PhysRevB.83.125410
  • Li J, Silva GRM, Kain S, et al. Spin-squeezing-induced enhancement of the sensitivity of an atomic clock using coherent population trapping. Phys Rev A. 2022;106:013112. doi: 10.1103/PhysRevA.106.013112
  • Lee J, Ding R, Christensen J, et al. A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system. Nat Commun. 2022;13:5131. doi: 10.1038/s41467-022-31410-4