3,039
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Recent development in integrated Lithium niobate photonics

, , , , , , , , , , , & show all
Article: 2322739 | Received 29 Oct 2023, Accepted 19 Feb 2024, Published online: 12 Mar 2024

References

  • Sun J, Hao Y, Zhang L, et al. Brief review of Lithium Niobate crystal and its applications. J Synth Cryst. 2020;49:947–964.
  • Gao B, Ren M, Zheng D, et al. Long-lived Lithium Niobate: history and progress. J Synth Cryst. 2021;50:1183–1199.
  • Boes A, Chang L, Langrock C, et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science. 2023;379:eabj4396. doi: 10.1126/science.abj4396
  • Vazimali MG, Fathpour S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv Photon. 2022;4:034001. doi: 10.1117/1.AP.4.3.034001
  • Xie R-R, Li G-Q, Chen F, et al. Microresonators in lithium niobate thin films. Adv Opt Mater. 2021;9:2100539. doi: 10.1002/adom.202100539
  • https://seas.harvard.edu/news/2017/12/now-entering-lithium-niobate-valley.
  • Nakata Y, Gunji S, Okada T, et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl Phys A. 2004;79:1279–1282. doi: 10.1007/s00339-004-2748-1
  • Yoon J-G, Kim K. Growth of highly textured LiNbO3 thin film on si with MgO buffer layer through the sol-gel process. Appl Phys Lett. 1996;68:2523–2525. doi: 10.1063/1.115842
  • Lansiaux X, Dogheche E, Remiens D, et al. LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J Appl Phys. 2001;90:5274–5277. doi: 10.1063/1.1378332
  • Sakashita Y, Segawa H. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J Appl Phys. 1995;77:5995–5999. doi: 10.1063/1.359183
  • Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012;6:488–503. doi: 10.1002/lpor.201100035
  • Ren M, Xu J, Lan P, et al. Roadmap on nonlinear optics–focus on Chinese research. J Phys Photonics. 2023;5:032501. doi: 10.1088/2515-7647/acdb17
  • Li Q, Zhang H, Zhu H, et al. Characterizations of single-crystal lithium niobate thin films. Crystals. 2022;12:667. doi: 10.3390/cryst12050667
  • Szafraniak I, Radu I, Scholz R, et al. Single-crystalline ferroelectric thin films by ion implantation and direct wafer bonding. Integr Ferroelectr. 2003;55:983–990. doi: 10.1080/10584580390259452
  • Solal M, Pastureaud T, Ballandras S, et al. Oriented lithium niobate layers transferred on 4” (100) silicon wafer for RF SAW devices. IEEE International Ultrasonic Symposium. Munich, Germany; 2002. p. 131–134.
  • Rabiei P, Gunter P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl Phys Lett. 2004;85:4603–4605. doi: 10.1063/1.1819527
  • Wooten EL, Kissa KM, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant. 2000;6:69–82. doi: 10.1109/2944.826874
  • Parameswaran KR, Route R, Kurz JR, et al. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt Lett. 2002;27:179–181. doi: 10.1364/OL.27.000179
  • Rabiei P, Steier WH. Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl Phys Lett. 2005;86:161115. doi: 10.1063/1.1906311
  • Guarino A, Poberaj G, Rezzonico D, et al. Electro–optically tunable microring resonators in lithium niobate. Nat Photonics. 2007;1:407–410. doi: 10.1038/nphoton.2007.93
  • Hu H, Ricken R, Sohler W. Lithium niobate photonic wires. Opt Express. 2009;17:24261–24268. doi: 10.1364/OE.17.024261
  • Poberaj G, Koechlin M, Sulser F, et al. Ion-sliced lithium niobate thin films for active photonic devices. Opt Mater. 2009;31:1054–1058. doi: 10.1016/j.optmat.2007.12.019
  • Koechlin M, Poberaj G, Günter P. High-resolution laser lithography system based on two-dimensional acousto-optic deflection. Rev Sci Instrum. 2009;80:085105. doi: 10.1063/1.3202274
  • Poberaj G, Koechlin M, Sulser F, et al. High-density integrated optics in ion-sliced lithium niobate thin films. Conference on Integrated Optics: Devices, Materials, and Technologies XIV. San Francisco, CA; 2010. p. 76040U.
  • Sulser F, Poberaj G, Koechlin M, et al. Photonic crystal structures in ion-sliced lithium niobate thin films. Opt Express. 2009;17:20291–20300. doi: 10.1364/OE.17.020291
  • Hu H, Yang J, Gui L, et al. Lithium niobate-on-insulator (LNOI): status and perspectives. Conference on Silicon Photonics and Photonic Integrated Circuits III. Brussels, Belgium; 2012. p. 84311D.
  • Lin J, Xu Y, Fang Z, et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. arXiv. 2014;1405:6473.
  • Lin J, Xu Y, Fang Z, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci Rep. 2015;5:8072. doi: 10.1038/srep08072
  • Lin J, Yao N, Hao Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett. 2019;122:173903. doi: 10.1103/PhysRevLett.122.173903
  • Ge L, Jiang H, Liu Y, et al. Quality improvement and mode evolution of high-Q lithium niobate micro-disk induced by “light annealing”. Opt Mater Express. 2019;9:1632–1639. doi: 10.1364/OME.9.001632
  • Wang C, Burek M, Lin Z, et al. Integrated high quality factor lithium niobate microdisk resonators. Opt Express. 2014;22:30924–30933. doi: 10.1364/OE.22.030924
  • Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica. 2017;4:1536–1537. doi: 10.1364/OPTICA.4.001536
  • Wolf R, Breunig I, Zappe H, et al. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt Express. 2017;25:29927–29933. doi: 10.1364/OE.25.029927
  • Wolf R, Breunig I, Zappe H, et al. Scattering-loss reduction of ridge waveguides by sidewall polishing. Opt Express. 2018;26:19815–19820. doi: 10.1364/OE.26.019815
  • Wu R, Zhang J, Yao N, et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett. 2018;43:4116–4119. doi: 10.1364/OL.43.004116
  • Wu R, Wang M, Xu J, et al. Long low-loss-lithium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials. 2018;8:910. doi: 10.3390/nano8110910
  • Zhou J, Gao R, Lin J, et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin Phys Lett. 2020;37:084201. doi: 10.1088/0256-307X/37/8/084201
  • Chen J, Liu Z, Song L, et al. Ultra-high-speed high-resolution laser lithography for lithium niobate integrated photonics. Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXII. San Francisco, CA; 2023.
  • Gao R, Zhang H, Bo F, et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J Phys. 2021;23:123027. doi: 10.1088/1367-2630/ac3d52
  • Gao R, Yao N, Guan J, et al. Lithium niobate microring with ultra-high Q factor above 108. Chin Opt Lett. 2022;20:011902. doi: 10.3788/COL202220.011902
  • Li C, Guan J, Lin J, et al. Ultra-high Q lithium niobate microring monolithically fabricated by photolithography assisted chemo-mechanical etching. Opt Express. 2023;31:31556–31562. doi: 10.1364/OE.498086
  • Wang J, Bo F, Wan S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt Express. 2015;23:23072–23078. doi: 10.1364/OE.23.023072
  • Zhang Y, Li H, Ding T, et al. Scalable, fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics. Optica. 2023;10:688–693. doi: 10.1364/OPTICA.489383
  • Luke K, Kharel P, Reimer C, et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt Express. 2020;28:24452–24458. doi: 10.1364/OE.401959
  • Wang HY, Xu Y, Li ZY, et al. Thin-film lithium niobate photonic devices on 8-inch silicon substrates. Optical Fiber Communications Conference and Exhibition (OFC). San Diego, CA; 2023.
  • Niu Y, Lin C, Liu X, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett. 2020;116:101104. doi: 10.1063/1.5142750
  • Prabhakar K, Reano R. Fabrication of low loss lithium niobate rib waveguides through photoresist reflow. IEEE Photon J. 2022;14:1–8. doi: 10.1109/JPHOT.2022.3222184
  • Shams-Ansari A, Huang G, He L, et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 2022;7:081301. doi: 10.1063/5.0095146
  • Hu H, Ricken R, Sohler W, et al. Lithium niobate ridge waveguides fabricated by Wet Etching. IEEE Photonics Technol Lett. 2007;19:417–419. doi: 10.1109/LPT.2007.892886
  • Yang F, Fang X, Chen X, et al. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth. Chin Opt Lett. 2022;20:022502. doi: 10.3788/COL202220.022502
  • Zhuang R, He J, Qi Y, et al. High- Q thin-film lithium niobate microrings fabricated with Wet Etching. Adv Mater. 2023;35:2208113. doi: 10.1002/adma.202208113
  • Wang L, Clube F, Dais C, et al. Sub-wavelength printing in the deep ultra-violet region using displacement Talbot Lithography. Microelectron Eng. 2016;161:104–108. doi: 10.1016/j.mee.2016.04.017
  • Chen G, Li N, Ng JD, et al. Advances in lithium niobate photonics: development status and perspectives. Adv Photon. 2022;4:034003. doi: 10.1117/1.AP.4.3.034003
  • Rabiei P, Ma J, Khan S, et al. Heterogeneous lithium niobate photonics on silicon substrates. Opt Express. 2013;21:25573–25581. doi: 10.1364/OE.21.025573
  • Chang L, Li Y, Volet N, et al. Thin film wavelength converters for photonic integrated circuits. Optica. 2016;3:531–535. doi: 10.1364/OPTICA.3.000531
  • Solmaz M, Adams D, Tan W, et al. Vertically integrated As2S3 ring resonator on LiNbO3. Opt Lett. 2009;34:1735–1737. doi: 10.1364/OL.34.001735
  • Cao L, Aboketaf A, Wang Z, et al. Hybrid amorphous silicon (a-Si: H)–LiNbO3 electro-optic modulator. Opt Commun. 2014;330:40–44. doi: 10.1016/j.optcom.2014.05.021
  • Bo F, Wang J, Cui J, et al. Lithium‐niobate–Silica hybrid Whispering‐Gallery‐mode resonators. Adv Mater. 2015;27:8075–8081. doi: 10.1002/adma.201504722
  • Li S, Cai L, Wang Y, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt Express. 2015;23:24212–24219. doi: 10.1364/OE.23.024212
  • Rao A, Patil A, Rabiei P, et al. High-performance and linear thin-film lithium niobate mach–zehnder modulators on silicon up to 50 GHz. Opt Lett. 2016;41:5700–5703. doi: 10.1364/OL.41.005700
  • Han X, Jiang Y, Frigg A, et al. Mode and polarization‐division multiplexing based on silicon nitride loaded lithium niobate on insulator platform. Laser Photonics Rev. 2022;16:2100529. doi: 10.1002/lpor.202100529
  • Yu Z, Tong Y, Tsang H, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat Commun. 2020;11:2602. doi: 10.1038/s41467-020-15358-x
  • Yu Z, Xi X, Ma J, et al. Photonic integrated circuits with bound states in the continuum. Optica. 2019;6:1342–1348. doi: 10.1364/OPTICA.6.001342
  • Yu Y, Yu Z, Wang L, et al. Ultralow‐loss Etchless lithium niobate integrated Photonics at Near‐Visible wavelengths. Adv Opt Mater. 2021;9:2100060. doi: 10.1002/adom.202100060
  • Hu H, Gui L, Ricken R, et al. Towards nonlinear photonic wires in lithium niobate. In: Integrated optics: devices, materials, and technologies XIV; San Francisco, California, United States; 2010. p. 76040R.
  • Mackwitz P, Rüsing M, Berth G, et al. Periodic domain inversion in x-cut single-crystal lithium niobate thin film. Appl Phys Lett. 2016;108:152902. doi: 10.1063/1.4946010
  • Wang C, Langrock C, Marandi A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica. 2018;5:1438–1441. doi: 10.1364/OPTICA.5.001438
  • Lu J, Surya JB, Liu X, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica. 2019;6:1455–1460. doi: 10.1364/OPTICA.6.001455
  • Gainutdinov R, Volk T, Zhang H. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO3 films on SiO2/LiNbO3 substrates. Appl Phys Lett. 2015;107:162903. doi: 10.1063/1.4934186
  • Hao Z, Zhang L, Gao A, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci China Phys Mech Astron. 2018;61:114211. doi: 10.1007/s11433-018-9241-5
  • Liu Y, Yan X, Wu J, et al. On-chip erbium-doped lithium niobate microcavity laser. Sci China Phys Mech Astron. 2021;64:234262. doi: 10.1007/s11433-020-1625-9
  • Luo Q, Hao Z, Yang C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip. Sci China Phys Mech Astron. 2021;64:234263. doi: 10.1007/s11433-020-1637-8
  • Wang M, Fang Z, Lin J, et al. Integrated active lithium niobate photonic devices. Jpn J Appl Phys. 2023;62:SC0801. doi: 10.35848/1347-4065/aca986
  • Chen Z, Xu Q, Zhang K, et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt Lett. 2021;46:1161–1164. doi: 10.1364/OL.420250
  • Zhou Y, Zhu Y, Fang Z, et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process. Laser Photonics Rev. 2023;17:2200686. doi: 10.1002/lpor.202200686
  • Wang S, Yang L, Cheng R, et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl Phys Lett. 2020;116:151103. doi: 10.1063/1.5142631
  • Luo Q, Bo F, Kong Y, et al. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv Photon. 2023;5:034002. doi: 10.1117/1.AP.5.3.034002
  • Shams-Ansari A, Renaud D, Cheng R, et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica. 2022;9:408–411. doi: 10.1364/OPTICA.448617
  • Zhang X, Liu X, Ma R, et al. Heterogeneously integrated III–v-on-lithium niobate broadband light sources and photodetectors. Opt Lett. 2022;47:4564–4567. doi: 10.1364/OL.468008
  • Li Z, Wang R, Lihachev G, et al. Tightly confining lithium niobate photonic integrated circuits and lasers. 2022:arXiv:220805556.
  • Op de Beeck C, Mayor F, Cuyvers S, et al. III/V-on-lithium niobate amplifiers and lasers. Optica. 2021;8:1288–1289. doi: 10.1364/OPTICA.438620
  • Yu M, Barton Iii D, Cheng R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature. 2022;612:252–258. doi: 10.1038/s41586-022-05345-1
  • Yu M, Cheng R, Reimer C, et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat Photonics. 2023;17:666–671. doi: 10.1038/s41566-023-01227-8
  • Li M, Chang L, Wu L, et al. Integrated Pockels laser. Nat Commun. 2022;13:5344. doi: 10.1038/s41467-022-33101-6
  • Zhu Y, Yu S, Fang Z, et al. Integrated electro-optically tunable narrow-linewidth III-V laser [internet]. arXiv; 2023 [cited 2023 Dec 27]. Available from: http://arxiv.org/abs/2311.15315.
  • Suen J, Fan K, Montoya J, et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica. 2017;4:276–279. doi: 10.1364/OPTICA.4.000276
  • Gopalan K, Janner D, Nanot S, et al. Mid-infrared pyroresistive graphene detector on LiNbO 3. Adv Opt Mater. 2017;5:1600723. doi: 10.1002/adom.201600723
  • Guan H, Hong J, Wang X, et al. Broadband, high‐Sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv Opt Mater. 2021;9:2100245. doi: 10.1002/adom.202100245
  • Sun X, Sheng Y, Gao X, et al. Self-powered lithium niobate thin-film photodetectors. Small. 2022;18:2203532. doi: 10.1002/smll.202203532
  • Jin C, Wang C, Qu L, et al. Fast lithium niobate photodetector. Laser Photonics Rev. 2023;17:2300503. doi: 10.1002/lpor.202300503
  • Desiatov B, Lončar M. Silicon photodetector for integrated lithium niobate photonics. Appl Phys Lett. 2019;115:121108. doi: 10.1063/1.5118901
  • Yi-Yan A, Chan W, Gmitter TJ, et al. Grafted GaAs detectors on lithium niobate and glass optical waveguides. IEEE Photonics Technol Lett. 1989;1:379–380. doi: 10.1109/68.43385
  • Guo X, Shao L, He L, et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform. Photonics Res. 2022;10:1338–1343. doi: 10.1364/PRJ.455969
  • Colangelo M, Desiatov B, Zhu D, et al. Superconducting nanowire single-photon detector on thin film lithium niobate photonic waveguide. Conference on Lasers and Electro-Optics. San Jose, CA; 2020. p. SM4O.4.
  • Höpker JP, Bartnick M, Meyer-Scott E, et al. Towards integrated superconducting detectors on lithium niobate waveguides. Conference on Quantum Photonic Devices. San Diego, California, United States; 2017. p. 1035809.
  • Sayem AA, Cheng R, Wang S, et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors. Appl Phys Lett. 2020;116:151102. doi: 10.1063/1.5142852
  • Lomonte E, Wolff MA, Beutel F, et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat Commun. 2021;12:6847. doi: 10.1038/s41467-021-27205-8
  • Wang S, Chapman RJ, Johnson BC, et al. Integration of black phosphorus photoconductors with lithium niobate on insulator photonics. Adv Opt Mater. 2023;11:2201688. doi: 10.1002/adom.202201688
  • Xue Y, Wu X, Chen K, et al. Waveguide integrated high-speed black phosphorus photodetector on a thin film lithium niobate platform. Opt Mater Express. 2023;13:272–281. doi: 10.1364/OME.477278
  • He Z, Guan H, Liang X, et al. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate. Research. 2023;6:0199. doi: 10.34133/research.0199
  • Gan X, Shiue R-J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photon. 2013;7:883–887. doi: 10.1038/nphoton.2013.253
  • Qian Y, Zhang Y, Xu J, et al. Domain-Wall p - n Junction in Lithium Niobate Thin Film on an Insulator. Phys Rev Appl. 2022;17:044011. doi: 10.1103/PhysRevApplied.17.044011
  • Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562:101–104. doi: 10.1038/s41586-018-0551-y
  • Xu M, He M, Zhang H, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun. 2020;11:3911. doi: 10.1038/s41467-020-17806-0
  • Kharel P, Reimer C, Luke K, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica. 2021;8:357–363. doi: 10.1364/OPTICA.416155
  • Wang X, Weigel PO, Zhao J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics mach zehnder modulators using thin film lithium niobate. APL Photon. 2019;4:096101. doi: 10.1063/1.5115243
  • Yuguang Z, Mengyue X, Hongguang Z, et al. 220 Gbit/s optical PAM4 modulation based on lithium niobate on insulator modulator. 45th European Conference on Optical Communication; Dublin, Ireland. 2019.
  • Chen X, Raybon G, Che D, et al. Transmission of 200-GBaud PDM probabilistically shaped 64-QAM signals modulated via a 100-GHz thin-film LiNbO3 I/Q modulator. Optical Fiber Communications Conference and Exhibition (OFC); Washington, DC United States. 2021. p. F3C.5.
  • Chen X, Cho J, Raybon G, et al. Single-wavelength and single-Photodiode 700 gb/s entropy-loaded PS-256-QAM and 200-GBaud PS-PAM-16 Transmission over 10-km SMF. 2020 European Conference on Optical Communications (ECOC); Brussels, Belgium. 2020. p. 1–4.
  • Chiles J, Fathpour S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica. 2014;1:350–355. doi: 10.1364/OPTICA.1.000350
  • Rao A, Patil A, Chiles J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt Express. 2015;23:22746–22752. doi: 10.1364/OE.23.022746
  • Weigel PO, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express. 2018;26:23728–23739. doi: 10.1364/OE.26.023728
  • Boynton N, Cai H, Gehl M, et al. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt Express. 2020;28:1868–1884. doi: 10.1364/OE.28.001868
  • Wang M, Li J, Yao H, et al. Thin-film lithium-niobate modulator with a combined passive bias and thermo-optic bias. Opt Express. 2022;30:39706–39715. doi: 10.1364/OE.474594
  • Xu M, Cai X. Advances in integrated ultra-wideband electro-optic modulators [Invited]. Opt Express. 2022;30:7253–7274. doi: 10.1364/OE.449022
  • Xu M, Zhu Y, Pittalà F, et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica. 2022;9:61. doi: 10.1364/OPTICA.449691
  • Mardoyan H, Almonacil S, Jorge F, et al. First 260-GBd single-carrier coherent transmission over 100 km distance based on novel arbitrary waveform generator and thin-film lithium niobate I/Q modulator. In: Leuthold J, and Limberger H, editors 2022 European Conference on Optical Communication (ECOC); Basel Switzerland. Optica Publishing Group; 2022. p.Th3C.2.
  • Hu J, Li C, Guo C, et al. Folded thin-film lithium niobate modulator based on a poled mach–zehnder interferometer structure. Opt Lett. 2021;46:2940–2943. doi: 10.1364/OL.426083
  • Sun S, Xu M, He M, et al. Folded heterogeneous silicon and lithium niobate Mach–Zehnder modulators with low drive voltage. Micromach. 2021;12:823. doi: 10.3390/mi12070823
  • Xue Y, Gan RF, Chen KX, et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica. 2022;9:1131–1137. doi: 10.1364/OPTICA.470596
  • Shao L, Yu M, Maity S, et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica. 2019;6:1498–1505. doi: 10.1364/OPTICA.6.001498
  • Sarabalis CJ, Laer RV, Patel RN, et al. Acousto-optic modulation of a wavelength-scale waveguide. Optica. 2021;8:477–483. doi: 10.1364/OPTICA.413401
  • Jiang W, Patel RN, Mayor FM, et al. Lithium niobate piezo-optomechanical crystals. Optica. 2019;6:845–853. doi: 10.1364/OPTICA.6.000845
  • Sarabalis CJ, McKenna TP, Patel RN, et al. Acousto-optic modulation in lithium niobate on sapphire. APL Photon. 2020;5:086104. doi: 10.1063/5.0012288
  • Wan L, Yang Z, Zhou W, et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Sci Appl. 2022;11:145. doi: 10.1038/s41377-022-00840-6
  • Gaur T, Mishra P, Hegde G, et al. Modeling and Analysis of Device Orientation, Analog and Digital Performance of Electrode Design for High Speed Electro-Optic Modulator. Photonics. 2023;10:3.
  • Baida FI, Robayo Yepes JJ, Ndao A. Giant second harmonic generation in etch-less lithium niobate thin film. J Appl Phys. 2023;133. doi: 10.1063/5.0142816
  • Park T, Stokowski HS, Ansari V, et al. High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Opt Lett. 2022;47:2706. doi: 10.1364/OL.455046
  • Rao A, Abdelsalam K, Sjaardema T, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W −1 cm −2. Opt Express. 2019;27:25920–25930. doi: 10.1364/OE.27.025920
  • Chen P-K, Briggs I, Cui C, et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat Nanotechnol [Internet]. 2023 [cited 2023 Oct 31]. Available from: https://www.nature.com/articles/s41565-023-01525-w.
  • Lu J, Li M, Zou C-L, et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica. 2020;7:1654. doi: 10.1364/OPTICA.403931
  • Du H, Zhang X, Wang L, et al. Highly efficient, modal phase-matched second harmonic generation in a double-layered thin film lithium niobate waveguide. Opt Express. 2023;31:9713–9726. doi: 10.1364/OE.482572
  • Wang L, Zhang X, Chen F. Efficient second harmonic generation in a reverse‐polarization dual‐layer crystalline thin film nanophotonic waveguide. Laser Photonics Rev. 2021;15:2100409. doi: 10.1002/lpor.202100409
  • Jankowski M, Langrock C, Desiatov B, et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica. 2020;7:40–46. doi: 10.1364/OPTICA.7.000040
  • Tang Y, Ding T, Lu C, et al. Broadband second-harmonic generation in an angle-cut lithium niobate-on-insulator waveguide by a temperature gradient. Opt Lett. 2023;48:1108–1111. doi: 10.1364/OL.481649
  • Yan C, Wang S, Zhao S, et al. Efficient and temperature-tunable second-harmonic generation in a thin film lithium niobate on insulator microdisk. Appl Phys Lett. 2023;122:122. doi: 10.1063/5.0141363
  • Ling J, Staffa J, Wang H, et al. Self‐Injection locked frequency conversion laser. Laser Photonics Rev. 2023;17:2200663. doi: 10.1002/lpor.202200663
  • Wu X, Zhang L, Hao Z, et al. Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides. Opt Lett. 2022;47:1574–1577. doi: 10.1364/OL.450547
  • Zhu J, Sun X, Ding T, et al. Sum-frequency generation in a high-quality thin film lithium niobate microdisk via cyclic quasi-phase matching. J Opt Soc Am B. 2023;40:D44–D49. doi: 10.1364/JOSAB.482270
  • Wang X, Jiao X, Wang B, et al. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips. Npj Quantum Inf. 2023;9:1–7. doi: 10.1038/s41534-023-00704-w
  • Yang Y, Xu X, Wang J, et al. Nonlinear optical radiation of a lithium niobate microcavity. Phys Rev Appl. 2023;19:034087. doi: 10.1103/PhysRevApplied.19.034087
  • Chen J, Sua YM, Ma Z, et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin. 2019;2:2914–2924. doi: 10.1364/OSAC.2.002914
  • Rao A, Abdelsalam K, Sjaardema T, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W −1 cm −2. Opt Express. 2019;27:25920–25930. doi: 10.1364/OE.27.025920
  • Zhao J, Rüsing M, Javid UA, et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt Express. 2020;28:19669–19682. doi: 10.1364/OE.395545
  • Chen J-Y, Tang C, Ma Z-H, et al. Ultra-efficient and highly-tunable second-harmonic generation in Z-cut periodically poled lithium niobate nanowaveguides. Opt Lett. 2020;45:3789–3792. doi: 10.1364/OL.393445
  • Sayem AA, Wang Y, Lu J, et al. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl Phys Lett. 2021;119:231104. doi: 10.1063/5.0071769
  • Mu B, Wu X, Niu Y, et al. Locally periodically poled LNOI ridge waveguide for second harmonic generation [invited]. Chin Opt Lett. 2021;19:060007. doi: 10.3788/COL202119.060007
  • Liu X, Gao S, Zhang C, et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Adv Photon Nexus. 2022;1:016001. doi: 10.1117/1.APN.1.1.016001
  • Lu C, Li H, Qiu J, et al. Second and cascaded harmonic generation of pulsed laser in a lithium niobate on insulator ridge waveguide. Opt Express. 2022;30:1381–1387. doi: 10.1364/OE.447958
  • Zhang H, Li Q, Zhu H, et al. Second harmonic generation by quasi-phase matching in a lithium niobate thin film. Opt Mater Express. 2022;12:2252–2259. doi: 10.1364/OME.452483
  • Wang C, Zhang M, Yu M, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun. 2019;10:978. doi: 10.1038/s41467-019-08969-6
  • He Y, Yang Q-F, Ling J, et al. Self-starting bi-chromatic LiNbO 3 soliton microcomb. Optica. 2019;6:1138. doi: 10.1364/OPTICA.6.001138
  • He Y, Ling J, Li M, et al. Perfect soliton crystals on demand. Laser Photon Rev. 2020;14:14. doi: 10.1002/lpor.201900339
  • Gong Z, Liu X, Xu Y, et al. Near-octave lithium niobate soliton microcomb. Optica. 2020;7:1275–1278. doi: 10.1364/OPTICA.400994
  • Yang C, Hao Z, Luo Q, et al. Soliton microcombs in ytterbium-doped lithium-niobate microrings. Conference on Lasers and Electro-Optics; San Jose, California United States. Optica Publishing Group; 2022. p. JTh3B.49.
  • Cheng R, Yu M, Shams-Ansari A, et al. On-chip synchronous pumped χ(3) optical parametric oscillator on thin-film lithium niobate. arXiv: 230412878. 2023;
  • Gong Z, Liu X, Xu Y, et al. Soliton microcomb generation at 2 μm in z-cut lithium niobate microring resonators. Opt Lett. 2019;44:3182–3185. doi: 10.1364/OL.44.003182
  • Wan S, Wang P-Y, Ma R, et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons. arXiv: 230502590. 2023;
  • Shang C, Pan A, Hu C, et al. 112Gb/S PAM4 electro-optic modulator based on thin-film LN-on-insulator. International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA); Wuhan China. Optical Society of America; 2019. p. OW1B.3.
  • Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun. 2020;11:4123. doi: 10.1038/s41467-020-17950-7
  • Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–377. doi: 10.1038/s41586-019-1008-7
  • Hu Y, Yu M, Buscaino B, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat Photonics. 2022;16:679–685. doi: 10.1038/s41566-022-01059-y
  • Shams-Ansari A, Yu M, Chen Z, et al. Thin-film lithium-niobate electro-optic platform for spectrally tailored dual-comb spectroscopy. Commun Phys. 2022;5. doi: 10.1038/s42005-022-00865-8
  • Zhang K, Sun W, Chen Y, et al. A power-efficient integrated lithium niobate electro-optic comb generator. Commun Phys. 2023;6:6. doi: 10.1038/s42005-023-01137-9
  • Renaud D, Assumpcao DR, Joe G, et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat Commun. 2023;14:1496. doi: 10.1038/s41467-023-36870-w
  • Javid UA, Ling J, Lopez-Rios R, et al. A nanophotonic broadband quantum optical frequency comb. Conference on Lasers and Electro-Optics; San Jose, California United States. Optica Publishing Group; 2022. p. FTh5C.3.
  • Xu M, He M, Zhu Y, et al. Flat optical frequency comb generator based on integrated lithium niobate modulators. J Lightwave Technol. 2022;40:339–345. doi: 10.1109/JLT.2021.3100254
  • Ren T, Zhang M, Wang C, et al. An integrated low-voltage Broadband lithium niobate phase modulator. IEEE Photonics Technol Lett. 2019;31:889–892. doi: 10.1109/LPT.2019.2911876
  • Jerez B, Martín-Mateos P, Walla F, et al. Flexible electro-optic, single-crystal difference frequency generation architecture for ultrafast mid-infrared dual-comb spectroscopy. ACS Photonics. 2018;5:2348–2353. doi: 10.1021/acsphotonics.8b00143
  • Yan M, Luo PL, Iwakuni K, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light: Sci Appl. 2017;6:e17076. doi: 10.1038/lsa.2017.76
  • Phillips CR, Langrock C, Pelc JS, et al. Supercontinuum generation in quasi-phase-matched LiNbO_3 waveguide pumped by a Tm-doped fiber laser system. Opt Lett. 2011;36:3912–3914. doi: 10.1364/OL.36.003912
  • Mayer AS, Phillips CR, Langrock C, et al. Offset-free gigahertz mid infrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide. Phys Rev Appl. 2016;6:054009. doi: 10.1103/PhysRevApplied.6.054009
  • Jankowski M, Langrock C, Desiatov B, et al. Ultrabroadband nonlinear optics in dispersion engineered periodically poled lithium niobate waveguides. 2019 Conference on Lasers and Electro-Optics (CLEO); San Jose, CA, USA. 2019. p. 1–2.
  • Yu M, Desiatov B, Okawachi Y, et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt Lett. 2019;44:1222–1225. doi: 10.1364/OL.44.001222
  • Lu J, Xu Y, Surya J, et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. In: Frontiers in Optics / Laser Science. DC United States: OSA Technical Digest Washington; 2018. p. JW3A.94.
  • Wu T, Ledezma L, Fredrick CD, et al. Visible to ultraviolet frequency comb generation in lithium niobate nanophotonic waveguides. arXiv: 230508006. 2023;
  • Zhang M, Reimer C, He L, et al. Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities. 2019 Conference on Lasers and Electro-Optics (CLEO); San Jose, CA, USA. 2019. p. 1–2.
  • Gong Z, Shen M, Lu J, et al. Monolithic Kerr and electro-optic hybrid microcombs. Optica. 2022;9:1060. doi: 10.1364/OPTICA.462055
  • Roy A, Ledezma L, Costa L, et al. Visible-to-mid-IR tunable frequency comb in nanophotonics. arXiv: 221208723. 2022;
  • Helgason ÓB, Arteaga-Sierra FR, Ye Z, et al. Dissipative solitons in photonic molecules. Nat Photonics. 2021;15:305–310. doi: 10.1038/s41566-020-00757-9
  • Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics. 2015;9:594–600. doi: 10.1038/nphoton.2015.137
  • Xue X, Xuan Y, Wang P-H, et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon Rev. 2015;9:L23–L28. doi: 10.1002/lpor.201500107
  • Moody G, Sorger VJ, Blumenthal DJ, et al. 2022 roadmap on integrated quantum photonics. J Phys Photonics. 2022;4:012501. doi: 10.1088/2515-7647/ac1ef4
  • Saravi S, Pertsch T, Setzpfandt F. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv Opt Mater. 2021;9:2100789. doi: 10.1002/adom.202100789
  • Zhao J, Ma C, Rüsing M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett. 2020;124:163603. doi: 10.1103/PhysRevLett.124.163603
  • Ma Z, Chen J-Y, Li Z, et al. Ultrabright quantum Photon sources on chip. Phys Rev Lett. 2020;125:263602. doi: 10.1103/PhysRevLett.125.263602
  • Xue G-T, Niu Y-F, Liu X, et al. Ultrabright multiplexed energy-time-entangled Photon generation from lithium niobate on insulator chip. Phys Rev Appl. 2021;15:064059. doi: 10.1103/PhysRevApplied.15.064059
  • Javid UA, Ling J, Staffa J, et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys Rev Lett. 2021;127:183601. doi: 10.1103/PhysRevLett.127.183601
  • Liu H-Y, Shang M, Liu X, et al. Deterministic N-photon state generation using lithium niobate on insulator device. Adv Photon Nexus. 2022;2:016003. doi: 10.1117/1.APN.2.1.016003
  • Sund PI, Lomonte E, Paesani S, et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci Adv. 2023;9:eadg7268. doi: 10.1126/sciadv.adg7268
  • Hu Y, Yu M, Zhu D, et al. On-chip electro-optic frequency shifters and beam splitters. Nature. 2021;599:587–593. doi: 10.1038/s41586-021-03999-x
  • Zhu D, Chen C, Yu M, et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light: Sci Appl. 2022;11:327. doi: 10.1038/s41377-022-01029-7
  • Langrock C, Diamanti E, Roussev RV, et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO_3 waveguides. Opt Lett. 2005;30:1725–1727. doi: 10.1364/OL.30.001725
  • Ekici C, Yu Y, Adcock JC, et al. High resolution on-chip thin-film lithium niobate single-photon buffer. arXiv:230104140 [Internet]. 2023 [cited 2023 Jun 30]. Available from: http://arxiv.org/abs/2301.04140.
  • Dutta S, Zhao Y, Saha U, et al. An atomic frequency comb memory in rare-earth-doped thin-film lithium niobate. ACS Photonics. 2023;10:1104–1109. doi: 10.1021/acsphotonics.2c01835
  • Aghaeimeibodi S, Desiatov B, Kim J-H, et al. Integration of quantum dots with lithium niobate photonics. Appl Phys Lett. 2018;113:221102. doi: 10.1063/1.5054865
  • Wang Z, Fang Z, Liu Z, et al. On-chip tunable microdisk laser fabricated on Er 3+ -doped lithium niobate on insulator. Opt Lett. 2021;46:380–383. doi: 10.1364/OL.410608
  • Gao R, Guan J, Yao N, et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt Lett. 2021;46:3131–3134. doi: 10.1364/OL.430015
  • Zhang R, Yang C, Hao Z, et al. Integrated lithium niobate single-mode lasers by the vernier effect. Sci China Phys Mech Astron. 2021;64:294216. doi: 10.1007/s11433-021-1749-x
  • Xiao Z, Wu K, Cai M, et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt Lett. 2021;46:4128–4131. doi: 10.1364/OL.432921
  • Liu X, Yan X, Liu Y, et al. Tunable single-mode laser on thin film lithium niobate. Opt Lett. 2021;46:5505–5508. doi: 10.1364/OL.441167
  • Lin J, Farajollahi S, Fang Z, et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv Photon. 2022;4:036001. doi: 10.1117/1.AP.4.3.036001
  • Yu S, Fang Z, Wang Z, et al. On-chip single-mode thin-film lithium niobate fabry–Perot resonator laser based on Sagnac loop reflectors. Opt Lett. 2023;48:2660–2663. doi: 10.1364/OL.484387
  • Li T, Wu K, Cai M, et al. A single-frequency single-resonator laser on erbium-doped lithium niobate on insulator. APL Photon. 2021;6:101301. doi: 10.1063/5.0061815
  • Liang Y, Zhou J, Wu R, et al. Monolithic single-frequency microring laser on an erbium-doped thin film lithium niobate fabricated by a photolithography assisted chemo-mechanical etching. Opt Continuum. 2022;1:1193–1201. doi: 10.1364/OPTCON.458622
  • Zhou Y, Wang Z, Fang Z, et al. On-chip microdisk laser on Yb3+-doped thin-film lithium niobate. Opt Lett. 2021;46:5651–5654. doi: 10.1364/OL.440379
  • Luo Q, Yang C, Hao Z, et al. On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency. Opt Lett. 2022;47:854–857. doi: 10.1364/OL.448232
  • Luo Q, Yang C, Hao Z, et al. On-chip erbium–ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold. Opt Lett. 2023;48:3447–3450. doi: 10.1364/OL.487683
  • Li M, Gao R, Li C, et al. Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 uW [internet]. arXiv; 2023 [cited 2024 Feb 3]. Available from: http://arxiv.org/abs/2309.10512.
  • Guan J, Li C, Gao R, et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate. Opt Laser Technol. 2024;168:109908. doi: 10.1016/j.optlastec.2023.109908
  • Zhou J, Liang Y, Liu Z, et al. On‐chip integrated waveguide amplifiers on erbium‐doped thin‐film lithium niobate on insulator. Laser Photonics Rev. 2021;15:2100030. doi: 10.1002/lpor.202100030
  • Cai M, Wu K, Xiang J, et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J Sel Top Quant. 2022;28:1–8. doi: 10.1109/JSTQE.2021.3137192
  • Luo Q, Yang C, Hao Z, et al. On-chip erbium-doped lithium niobate waveguide amplifiers [Invited]. Chin Opt Lett. 2021;19:060008. doi: 10.3788/COL202119.060008
  • Yan X, Liu Y, Wu J, et al. Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate. arXiv:210500214. 2021;
  • Liang Y, Zhou J, Liu Z, et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics. 2022;11:1033–1040. doi: 10.1515/nanoph-2021-0737
  • Zhang Z, Li S, Gao R, et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt Lett. 2023;48:4344–4347. doi: 10.1364/OL.497543
  • Han Y, Zhang X, Huang F, et al. Electrically pumped widely tunable O-band hybrid lithium niobite/III-V laser. Opt Lett. 2021;46:5413–5416. doi: 10.1364/OL.442281
  • Zhang X, Liu X, Liu L, et al. Heterogeneous integration of III–V semiconductor lasers on thin-film lithium niobite platform by wafer bonding. Appl Phys Lett. 2023;122:081103. doi: 10.1063/5.0142077
  • Zhou J, Huang T, Fang Z, et al. Laser diode-pumped compact hybrid lithium niobate microring laser. Opt Lett. 2022;47:5599–5601. doi: 10.1364/OL.474906
  • Snigirev V, Riedhauser A, Lihachev G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615:411–417. doi: 10.1038/s41586-023-05724-2
  • Fedotova A, Carletti L, Zilli A, et al. Lithium Niobate Meta-Optics. ACS Photonics. 2022;9:3745–3763. doi: 10.1021/acsphotonics.2c00835
  • Gao B, Ren M, Wu W, et al. Lithium Niobate Metasurfaces. Laser Photonics Rev. 2019;13:1800312. doi: 10.1002/lpor.201800312
  • Weigand H, Vogler-Neuling VV, Escalé MR, et al. Enhanced electro-optic modulation in resonant metasurfaces of lithium niobate. ACS Photonics. 2021;8:3004–3009. doi: 10.1021/acsphotonics.1c00935
  • Wang C, Li Z, Kim M-H, et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun. 2017;8:2098. doi: 10.1038/s41467-017-02189-6
  • Fedotova A, Younesi M, Sautter J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett. 2020;20:8608–8614. doi: 10.1021/acs.nanolett.0c03290
  • Li Z, Kim M-H, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotech. 2017;12:675–683. doi: 10.1038/nnano.2017.50
  • Wang Z, Song W, Chen Y, et al. Metasurface empowered lithium niobate optical phased array with an enlarged field of view. Photon Res. 2022;10:B23–B29. doi: 10.1364/PRJ.463118
  • Ji J, Wang Z, Sun J, et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams. Nano Lett. 2023;23:2750–2757. doi: 10.1021/acs.nanolett.3c00021
  • Fang B, Wang Z, Gao S, et al. Manipulating guided wave radiation with integrated geometric metasurface. Nanophotonics. 2022;11:1923–1930. doi: 10.1515/nanoph-2021-0466