697
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Quantum simulation in Fock-state lattices

, &
Article: 2325611 | Received 22 Nov 2023, Accepted 26 Feb 2024, Published online: 11 Mar 2024

References

  • Klitzing KV, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett. 1980 Aug;45:494–497. doi: 10.1103/PhysRevLett.45.494
  • Thouless DJ, Kohmoto M, Nightingale MP, et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys Rev Lett. 1982 Aug;49:405–408. doi: 10.1103/PhysRevLett.49.405
  • Andrei Bernevig B, Hughes TL, Zhang S-C. Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science. 2006;314:1757–1761. doi:10.1126/science.1133734
  • König M, Wiedmann S, Brüne C, et al. Quantum spin Hall insulator state in HgTe quantum wells. Science. 2007;318:766–770. doi:10.1126/science.1148047
  • Hasan MZ, Kane CL. Colloquium: topological insulators. Rev Mod Phys. 2010 Nov;82:3045–3067. doi: 10.1103/RevModPhys.82.3045
  • Qi X-L, Zhang S-C. Topological insulators and superconductors. Rev Mod Phys. 2011 Oct;83:1057–1110. doi: 10.1103/RevModPhys.83.1057
  • Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photonics. 2014;8:821–829. doi:10.1038/nphoton.2014.248
  • Ozawa T, Price HM, Amo A, et al. Topological photonics. Rev Mod Phys. 2019 Mar;91(1). Article number: 015006. doi: 10.1103/RevModPhys.91.015006
  • Jotzu G, Messer M, Desbuquois R, et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature. 2014;515:237–240. doi:10.1038/nature13915
  • Cooper NR, Dalibard J, Spielman IB. Topological bands for ultracold atoms. Rev Mod Phys. 2019 Mar;91:015005. doi: 10.1103/RevModPhys.91.015005
  • Nayak C, Simon SH, Stern A, et al. Non-Abelian anyons and topological quantum computation. Rev Mod Phys. 2008 Sep;80:1083–1159. doi: 10.1103/RevModPhys.80.1083
  • Gilbert MJ. Topological electronics. Commun Phys. 2021;4:70. doi:10.1038/s42005-021-00569-5
  • Yu Kitaev A. Fault-tolerant quantum computation by anyons. Ann Phys. 2003;303:2–30. doi:10.1016/S0003-4916(02)00018-0
  • Rechtsman MC, Zeuner JM, Plotnik Y, et al. Photonic Floquet topological insulators. Nature. 2013;496:196–200. doi:10.1038/nature12066
  • Lu L, Wang Z, Ye D, et al. Experimental observation of Weyl points. Science. 2015;349:622–624. doi:10.1126/science.aaa9273
  • Harari G, Bandres MA, Lumer Y, et al. Topological insulator laser: theory. Science. 2018;359:eaar4003. doi:10.1126/science.aar4003
  • Bandres MA, Wittek S, Harari G, et al. Topological insulator laser: experiments. Science. 2018;359:eaar4005. doi:10.1126/science.aar4005
  • Fang K, Yu Z, Fan S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat Photonics. 2012;6:782–787. doi:10.1038/nphoton.2012.236
  • Bahari B, Ndao A, Vallini F, et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science. 2017;358:636–640. doi:10.1126/science.aao4551
  • Haldane FDM. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys Rev Lett. 1988 Oct;61:2015–2018. doi: 10.1103/PhysRevLett.61.2015
  • Chang C-Z, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science. 2013;340:167–170. doi:10.1126/science.1234414
  • Deng Y, Yu Y, Zhu Shi M, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science. 2020;367:895–900. doi:10.1126/science.aax8156
  • Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 2020;367:900–903. doi: 10.1126/science.aay5533
  • Chen G, Sharpe AL, Fox EJ, et al. Tunable correlated chern insulator and ferromagnetism in a moiré superlattice. Nature. 2020;579:56–61. doi: 10.1038/s41586-020-2049-7
  • Li T, Jiang S, Shen B, et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature. 2021;600:641–646. doi: 10.1038/s41586-021-04171-1
  • Haldane FDM, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys Rev Lett. 2008 Jan;100. doi: 10.1103/PhysRevLett.100.013904
  • Wang Z, Chong Y, Joannopoulos JD, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature. 2009;461:772–775. doi:10.1038/nature08293
  • Lustig E, Weimann S, Plotnik Y, et al. Photonic topological insulator in synthetic dimensions. Nature. 2019;567:356–360. doi:10.1038/s41586-019-0943-7
  • Dutt A, Lin Q, Yuan L, et al. A single photonic cavity with two independent physical synthetic dimensions. Science. 2020;367:59–64. doi:10.1126/science.aaz3071
  • Hosten O, Kwiat P. Observation of the spin hall effect of light via weak measurements. Science. 2008;319:787–790. doi:10.1126/science.1152697
  • Luo X-W, Zhou X, Li C-F, et al. Quantum simulation of 2d topological physics in a 1D array of optical cavities. Nat Commun. 2015;6:7704. doi:10.1038/ncomms8704
  • Yuan L, Lin Q, Xiao M, et al. Synthetic dimension in photonics. Optica. 2018 Nov;5:1396–1405. doi: 10.1364/OPTICA.5.001396
  • Cai H, Wang DW. Topological phases of quantized light. Nat Sci Rev. 2020 08;8:nwaa196. doi: 10.1093/nsr/nwaa196
  • Deng J, Dong H, Zhang C, et al. Observing the quantum topology of light. Science. 2022;378:966–971. doi:10.1126/science.ade6219
  • Perez-Leija A, Moya-Cessa H, Szameit A, et al. Glauber-Fock photonic lattices. Opt Lett. 2010 Jul;35:2409–2411. doi: 10.1364/OL.35.002409
  • Keil R, Perez-Leija A, Dreisow F, et al. Classical analogue of displaced Fock states and quantum correlations in Glauber-Fock photonic lattices. Phys Rev Lett. 2011 Aug;107. doi: 10.1103/PhysRevLett.107.103601
  • Tschernig K, León-Montiel RDJ, Pérez-Leija A, et al. Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs. Photon Res. 2020 Jul;8:1161–1170. doi: 10.1364/PRJ.382831
  • Jaynes ET, Cummings FW. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE. 1963;51:89–109. doi:10.1109/PROC.1963.1664
  • Su WP, Schrieffer JR, Heeger AJ. Solitons in polyacetylene. Phys Rev Lett. 1979 Jun;42:1698–1701. doi: 10.1103/PhysRevLett.42.1698
  • Yuan J, Xu C, Cai H, et al. Gap-protected transfer of topological defect states in photonic lattices. APL Photonics. 2021;6. doi: 10.1063/5.0037394
  • Wu C, Liu W, Jia Y, et al. Observation of topological pumping of a defect state in a fock photonic lattice. Phys Rev A. 2023 Mar;107. doi: 10.1103/PhysRevA.107.033501
  • Levy N, Burke SA, Meaker KL, et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science. 2010;329:544–547. doi:10.1126/science.1191700
  • Guinea F, Katsnelson MI, Geim AK. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat Phys. 2010;6:30–33. doi:10.1038/nphys1420
  • Pereira VM, Castro Neto AH, Peres NMR. Tight-binding approach to uniaxial strain in graphene. Phys Rev B. 2009 Jul;80. doi: 10.1103/PhysRevB.80.045401
  • Xiao D, Yao W, Niu Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys Rev Lett. 2007 Dec;99:236809. doi: 10.1103/PhysRevLett.99.236809
  • Yao W, Xiao D, Niu Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys Rev B. 2008 Jun;77:235406. doi: 10.1103/PhysRevB.77.235406
  • Yuan J, Cai H, Wu C, et al. Unification of valley and anomalous hall effects in a strained lattice. Phys Rev B. 2021 Jul;104:035410. doi: 10.1103/PhysRevB.104.035410
  • Wang D-W, Cai H, Liu R-B, et al. Mesoscopic superposition states generated by synthetic spin-orbit interaction in fock-state lattices. Phys Rev Lett. 2016 Jun;116. doi: 10.1103/PhysRevLett.116.220502
  • Li H, Cai H, Xu J, et al. Quantum photonic transistor controlled by an atom in a floquet cavity-qed system. Opt Express. 2019 Mar;27:6946–6957.
  • Maleki Y, Zhou C, Suhail Zubairy M. Time-reversal-symmetry breaking and chiral quantum state manipulation in plasmonic nanorings. Phys Rev A. 2022 Apr;105:042422. doi: 10.1103/PhysRevA.105.042422
  • Wang D-W, Liu R-B, Zhu S-Y, et al. Superradiance lattice. Phys Rev Lett. 2015 Jan;114:043602. doi: 10.1103/PhysRevLett.114.043602
  • Wang D-W, Cai H, Yuan L, et al. Topological phase transitions in superradiance lattices. Optica. 2015 Aug;2:712–715. doi: 10.1364/OPTICA.2.000712
  • Chen L, Wang P, Meng Z, et al. Experimental observation of one-dimensional superradiance lattices in ultracold atoms. Phys Rev Lett. 2018 May;120. doi: 10.1103/PhysRevLett.120.193601
  • Cai H, Liu J, Wu J, et al. Experimental observation of momentum-space chiral edge currents in room-temperature atoms. Phys Rev Lett. 2019 Jan;122:023601. doi: 10.1103/PhysRevLett.122.023601
  • Li Y, Cai H, Wang D-W, et al. Many-body chiral edge currents and sliding phases of atomic spin waves in momentum-space lattice. Phys Rev Lett. Apr 2020;124:140401. doi: 10.1103/PhysRevLett.124.140401
  • Wang P, Chen L, Mi C, et al. Synthesized magnetic field of a sawtooth superradiance lattice in Bose-Einstein condensates. Npj Quantum Inf. 2020;6:18. doi:10.1038/s41534-020-0246-8
  • Mi C, Sadiq Nawaz K, Chen L, et al. Time-resolved interplay between superradiant and subradiant states in superradiance lattices of Bose-Einstein condensates. Phys Rev A. 2021 Oct;104. doi: 10.1103/PhysRevA.104.043326
  • He Y, Mao R, Cai H, et al. Flat-band localization in Creutz superradiance lattices. Phys Rev Lett. 2021 Mar;126:103601. doi: 10.1103/PhysRevLett.126.103601
  • Mao R, Xu X, Wang J, et al. Measuring Zak phase in room-temperature atoms. Light Sci Appl. 2022;11:291. doi:10.1038/s41377-022-00990-7
  • Xu X, Wang J, Dai J, et al. Floquet superradiance lattices in thermal atoms. Phys Rev Lett. 2022 Dec;129. doi: 10.1103/PhysRevLett.129.273603
  • Mattinson F, Kira M, Stenholm S. Adiabatic transfer between cavity modes[J]. J Mod Opt. 2001;48: 889–903.
  • Mei F, Chen G, Tian L, et al. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys Rev A. 2018 Jul;98:012331. doi: 10.1103/PhysRevA.98.012331
  • Longhi S. Topological pumping of edge states via adiabatic passage. Phys Rev B. 2019 Apr;99:155150. doi: 10.1103/PhysRevB.99.155150
  • Dong H, Deng J, Li H, et al. A quantum circulator and quantum chip. CN113206364B[p], March 25 2022.
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009 Jan;81:109–162. doi: 10.1103/RevModPhys.81.109
  • Goerbig MO. Electronic properties of graphene in a strong magnetic field. Rev Mod Phys. 2011 Nov;83:1193–1243. doi: 10.1103/RevModPhys.83.1193
  • Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond. 1984;392:45–47.
  • Layton E, Huang Y, Chu S-I. Cyclic quantum evolution and Aharonov-Anandan geometric phases in SU(2) spin-coherent states. Phys Rev A. 1990 Jan;41:42–48. doi: 10.1103/PhysRevA.41.42
  • Agarwal GS, Puri RR, Singh RP. Atomic Schrödinger cat states. Phys Rev A. 1997 Sep;56:2249–2254. doi: 10.1103/PhysRevA.56.2249
  • Morsch O, Müller JH, Cristiani M, et al. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1d optical lattices. Phys Rev Lett. 2001 Sep;87:140402. doi: 10.1103/PhysRevLett.87.140402
  • Battesti R, Cladé P, Guellati-Khélifa S, et al. Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/m Rb. Phys Rev Lett. 2004 Jun;92:253001. doi: 10.1103/PhysRevLett.92.253001
  • Sapienza R, Costantino P, Wiersma D, et al. Optical analogue of electronic Bloch oscillations. Phys Rev Lett. 2003 Dec;91:263902. doi: 10.1103/PhysRevLett.91.263902
  • Trompeter H, Krolikowski W, Neshev DN, et al. Bloch oscillations and zener tunneling in two-dimensional photonic lattices. Phys Rev Lett. 2006 Feb;96:053903. doi: 10.1103/PhysRevLett.96.053903
  • Trompeter H, Pertsch T, Lederer F, et al. Visual observation of Zener tunneling. Phys Rev Lett. 2006 Jan;96:023901. doi: 10.1103/PhysRevLett.96.023901
  • Goldman N, Dalibard J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys Rev X. 2014 Aug;4:031027. doi: 10.1103/PhysRevX.4.031027
  • Bianco R, Resta R. Mapping topological order in coordinate space. Phys Rev B. 2011 Dec;84:241106. doi: 10.1103/PhysRevB.84.241106
  • Mumford J. Synthetic gauge field in two interacting ultracold atomic gases without an optical lattice. Phys Rev A. 2022 Sep;106:033317. doi: 10.1103/PhysRevA.106.033317
  • Saugmann P, Larson J. Fock-state-lattice approach to quantum optics. Phys Rev A. 2023 Sep;108:033721. doi: 10.1103/PhysRevA.108.033721
  • Maleki Y, Zhou C, Suhail Zubairy M. Time-reversal-symmetry breaking in a scalable cavity QED lattice. Phys Rev A. 2023 Dec;108:063709. doi: 10.1103/PhysRevA.108.063709
  • Cai H, Ma S, Wang D-W. Nodal-line transition induced Landau gap in strained lattices. Phys Rev B. 2023 Aug;108:085113. doi: 10.1103/PhysRevB.108.085113
  • Lohse M, Schweizer C, Price HM, et al. Exploring 4D quantum hall physics with a 2D topological charge pump. Nature. 2018;553:55. doi: 10.1038/nature25000
  • Zilberberg O, Huang S, Guglielmon J, et al. Photonic topological boundary pumping as a probe of 4D quantum hall physics. Nature. 2018;553:59. doi: 10.1038/nature25011
  • Li Y, Schneble D, Wei T-C. Two-particle states in one-dimensional coupled Bose-Hubbard models. Phys Rev A. 2022 May;105:053310. doi: 10.1103/PhysRevA.105.053310
  • Cheng D, Peng B, Wang D-W, et al. Arbitrary synthetic dimensions via multiboson dynamics on a one-dimensional lattice. Phys Rev Res. 2021 Jul;3:033069. doi: 10.1103/PhysRevResearch.3.033069
  • Javid UA, Lopez-Rios R, Ling J, et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat Photonics. 2023;17:883–890. doi: 10.1038/s41566-023-01236-7
  • Yang J, Li Y, Yang Y, et al. Realization of all-band-flat photonic lattices. Nat Commun. 2024;15:1484. doi: 10.1038/s41467-024-45580-w
  • Yang J, Zhang P, Yoshihara M, et al. Image transmission using stable solitons of arbitrary shapes in photonic lattices. Optics Lett. 2011;36:772–774. doi:10.1364/OL.36.000772
  • Yang Y, Roques-Carmes C, Kooi SE, et al. Photonic flatband resonances for free-electron radiation. Nature. 2023;613:42–47. doi: 10.1038/s41586-022-05387-5
  • Goda M, Nishino S, Matsuda H. Inverse anderson transition caused by flatbands. Phys Rev Lett. 2006 Mar;96:126401. doi: 10.1103/PhysRevLett.96.126401
  • Zhang K, Yang Z, Fang C. Universal non-Hermitian skin effect in two and higher dimensions. Nat Commun. 2022;13:2496. doi:10.1038/s41467-022-30161-6
  • Gligorić G, Beličev PP, Leykam D, et al. Nonlinear symmetry breaking of aharonov-bohm cages. Phys Rev A. 2019;99:013826. doi:10.1103/PhysRevA.99.013826