297
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in atomic resolution three-dimensional holography

, , , &
Article: 2350161 | Received 10 Jan 2024, Accepted 26 Apr 2024, Published online: 17 May 2024

References

  • Deguchi H, Yoshida H, Inagaki T, et al. EXAFS study of doped ceria using multiple data set fit. Solid State Ion. 2005;176:1817–1825. doi: 10.1016/j.ssi.2005.04.043
  • Kompch A, Sahu A, Notthoff C, et al. Localization of Ag dopant atoms in CdSe nanocrystals by reverse monte carlo analysis of EXAFS spectra. J Phys Chem C. 2015;119:18762–18772. doi: 10.1021/acs.jpcc.5b04399
  • Kraynis O, Timoshenko J, Huang J, et al. Modeling strain distribution at the atomic level in doped ceria films with extended X-ray absorption fine structure spectroscopy. Inorg Chem. 2019;58:7527–7536. doi: 10.1021/acs.inorgchem.9b00730
  • Kluherz KT, Mergelsberg ST, Sommer DE, et al. Defect structure in quantum-cutting Yb3+-Doped CsPbCl3 perovskites probed by X-Ray absorption and atomic pair distribution function analysis. Phys Rev Mater. 2022;6:074601. doi: 10.1103/PhysRevMaterials.6.074601
  • Gurman SJ, McGreevy RL. Reverse monte carlo simulation for the analysis of EXAFS data. J Phys Cond Matter. 1990;2:9463–9473. doi: 10.1088/0953-8984/2/48/001
  • Keen DA, McGreevy RL, Hayes W, et al. Structural disorder in AgBr: reverse monte carlo analysis of powder neutron-diffraction data. Philos Mag Lett. 1990;61:349. doi: 10.1080/09500839008206504
  • Daimon H. Atomic-resolution holography for active-site structure. Jpn J Appl Phys. 2020;59:010504. doi: 10.7567/1347-4065/ab5f48
  • Szöke A. X-ray and electron holography using a local reference beam. In: AIP Conference Proceedings , No.147. New York: AIP; 1986. p. 361.
  • Fadley CS, Chen Y, Couch RE, et al. Surface,interface,and nanostructure characterization with photoelectron diffraction and photoelectron and X-ray holography. J Surf Anal. 1997;3:334.
  • Barton JJ. Photoelectron Holography. Phys Rev Lett. 1988;61:1356. doi: 10.1103/PhysRevLett.61.1356
  • Matsushita T, Muro T, Matsui F, et al. Principle and reconstruction algorithm for atomic-resolution holography. J Phys Soc Jpn. 2018;87:061002. doi: 10.7566/JPSJ.87.061002
  • Daimon H. Overview of three-dimensional atomic-resolution holography and imaging techniques: recent advances in local-structure science. J Phys Soc Jpn. 2018;87:061001. doi: 10.7566/JPSJ.87.061001
  • Matsui F, Matsushita T, Daimon H. Holographic reconstruction of photoelectron diffraction and its circular dichroism for local structure probing. J Phys Soc Jpn. 2018;87:061004. doi: 10.7566/JPSJ.87.061004
  • Faigel G, Bortel G, Fadley CS, et al. Ten Years of x-ray holography. X-Ray Spectrom. 2007;36:3–10. doi: 10.1002/xrs.935
  • Hayashi K, Happo N, Hosokawa S, et al. X-ray fluorescence holography. J Phys Condens Matter. 2012;24:093201. doi: 10.1088/0953-8984/24/9/093201
  • Hayashi K, Korecki P. X-ray fluorescence holography: principles, apparatus, and applications. J Phys Soc Jpn. 2018;87:061003. doi: 10.7566/JPSJ.87.061003
  • Cser L, Krexner G, Török G. Atomic-resolution neutron holography. Europhys Lett. 2001;54:747. doi: 10.1209/epl/i2001-00316-7
  • Hayashi K, Ohoyama K, Happo N, et al. Multiple-wavelength neutron holography with pulsed neutrons. Sci Adv. 2017;3:e1700294. doi: 10.1126/sciadv.1700294
  • Matsushita T, Guo FZ, Suzuki M, et al. Reconstruction algorithm for atomic-resolution holography using translational symmetry. Phys Rev B. 2008;78:144111. doi: 10.1103/PhysRevB.78.144111
  • Matsushita T, Matsui F. Features of atomic images reconstructed from photoelectron, Auger electron, and internal detector electron holography using SPEA-MEM. J Electron Spectrosc Relat Phenom. 2014;195:365. doi:10.1016/j.elspec.2014.05.005
  • Matsushita T. Atomic image reconstruction from atomic resolution holography using L1-regularized linear regression. E-J Surf Sci Nanotechnol. 2016;14:158. doi: 10.1380/ejssnt.2016.158
  • Takahashi T, Sumitani K, Kusano S. Holographic imaging of surface atoms using surface X-ray diffraction. Surf Sci. 2001;493:36–41. doi: 10.1016/S0039-6028(01)01186-4
  • Daimon H. Stereoscopic microscopy of atomic arrangement by circularly polarized-light photoelectron diffraction. Phys Rev Lett. 2001;86:2034. doi: 10.1103/PhysRevLett.86.2034
  • JSPS Grant-in-Aid for Scientific Research on Innovative Areas. project number 26105001 3D Active-Site Science. https://www.mext.go.jp/component/a_menu/science/detail/__icsFiles/afieldfile/2015/06/15/1358827_04.pdf https://kaken.nii.ac.jp/ja/grant/KAKENHI-AREA-2604/
  • Daimon H, Hayashi K, Kinoshita T, et al. Frontier of active-site science: new insights on material functions. Jpn J Appl Phys. 2020;59. https://iopscience.iop.org/journal/1347-4065/page/Frontier_of_active_site_science
  • Daimon H, Sasaki YC, editors. Kinou kouzou kagaku nyu-mon. Tokyo: Maruzen; 2016.
  • Daimon H, Sasaki YC, editors. 3D local structure and functionality design of materials. Tokyo: Maruzen and World Scientific; 2019.
  • https://sites.google.com/hyperordered.org/3d-air-image
  • Tsutsui K, Matsushita T, Natori K, et al. Individual atomic imaging of multiple dopant sites in As-doped Si using spectro-photoelectron holography. Nano Lett. 2017;17:7533. doi: 10.1021/acs.nanolett.7b03467
  • Hosokawa S, Stellhorn JR, Matsushita T, et al. Impurity position and lattice distortion in a Mn-doped Bi2Te3 topological insulator investigated by x-ray fluorescence holography and x-ray absorption fine structure. Phys Rev B. 2017;96:214207. doi: 10.1103/PhysRevB.96.214207
  • Yokoya T, Terashima K, Takeda A, et al. Asymmetric phosphorus incorporation in homoepitaxial P‐doped (111) diamond revealed by Photoelectron Holography. Nano Lett. 2019;19:5915. doi: 10.1021/acs.nanolett.9b01481
  • Hosokawa S, Happo N, Ozaki T, et al. Extent and feature of lattice distortions around Ga impurity atoms in InSb single crystal. Phys Rev B. 2013;87:094104. doi: 10.1103/PhysRevB.87.094104
  • Barton JJ. Removing multiple scattering and twin images from holographic images. Phys Rev Lett. 1991;67:3106. doi: 10.1103/PhysRevLett.67.3106
  • Uesaka A, Hayashi K, Matsushita T, et al. 3D atomic imaging by internal-detector electron holography. Phys Rev Lett. 2011;107:045502. doi: 10.1103/PhysRevLett.107.045502
  • Matsushita T, Matsui F, Daimon H, et al. Photoelectron holography with improved image reconstruction. J Electron Spectrosc Relat Phenom. 2010;178-179:195. doi: 10.1016/j.elspec.2009.06.002
  • Len PM, Denlinger JD, Rotenberg E, et al. Holographic atomic images from surface and bulk W(110) photoelectron diffraction data. Phys Rev B. 1999;59:5857. doi: 10.1103/PhysRevB.59.5857
  • Takagi H, Daimon H, Palomares FJ, et al. Photoelectron holography analysis of W(1 1 0)(1×1)–O surface. Surf Sci. 2001;470:189. doi: 10.1016/S0039-6028(00)00839-6
  • Matsushita T, Yoshigoe A, Agui A. Electron holography: a maximum entropy reconstruction scheme. Europhys Lett. 2005;71:597. doi: 10.1209/epl/i2005-10129-8
  • Matsushita T, Guo FZ, Matsui F, et al. Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram. Phys Rev B. 2007;75:085419. doi: 10.1103/PhysRevB.75.085419
  • Matsushita T. Algorithm for atomic resolution holography using modified L1-Regularized linear regression and steepest descent method. Phys Status Solidi B. 2018;255:1800091. doi: 10.1002/pssb.201800091
  • Kato Y, Matsui F, Matsushita H, et al. Dopant-site effect in superconducting diamond (111) studied by atomic stereophotography. Appl Phys Lett. 2007;91:251914. doi: 10.1063/1.2824844
  • Matsui F, Matsushita T, Daimon H. Photoelectron diffraction and holographic reconstruction of graphite. J Phys Soc Jpn. 2012;81:114604. doi: 10.1143/JPSJ.81.114604
  • Maejima N, Matsui F, Matsui H, et al. Site-specific atomic and electronic structure analysis of epitaxial silicon oxynitride thin film on SiC(0001) by photoelectron and Auger Electron Diffractions. J Phys Soc Jpn. 2014;83:044604. doi: 10.7566/JPSJ.83.044604
  • Matsui H, Matsui F, Maejima N, et al. Local atomic configuration of graphene, buffer layer, and precursor layer on SiC(0001) by photoelectron diffraction. Surf Sci. 2015;632:98–102. doi: 10.1016/j.susc.2014.09.021
  • Maejima N, Horita M, Matsui H, et al. Interfacial atomic site characterization by photoelectron diffraction for 4H-AlN/4H-SiC(11-20) heterojunction. Jpn J Appl Phys. 2016;55:085701. doi: 10.7567/JJAP.55.085701
  • Mori D, Oyama Y, Hirose T, et al. Local structural determination of N at SiO2/SiC(0001¯) interfaces by photoelectron diffraction. Appl Phys Lett. 2017;111:201603. doi: 10.1063/1.4997080
  • Fukami S, Taguchi M, Adachi Y, et al. Correlation between high gas sensitivity and dopant structure in W-doped ZnO. Phys Rev Appl. 2017;7:064029. doi: 10.1103/PhysRevApplied.7.064029
  • Mori D, Fujita Y, Hirose T, et al. Atomic characterization of nano-facet nitridation at SiC (11¯00) surface. Appl Phys Lett. 2018;112:131603. doi: 10.1063/1.5020098
  • Matsui F, Eguchi R, Nishiyama S, et al. Photoelectron holographic atomic arrangement imaging of cleaved bimetal-intercalated graphite superconductor surface. Sci Rep. 2016;6:36258. doi: 10.1038/srep36258
  • Matsui F, Matsushita T, Kato Y, et al. Atomic-layer resolved magnetic and electronic structure analysis of Ni thin film on a Cu(001) surface by diffraction spectroscopy. Phys Rev Lett. 2008;100:207201. doi: 10.1103/PhysRevLett.100.207201
  • Matsui F, Matsushita T, Daimon H. Photoelectron structure factor and diffraction spectroscopy. J Electron Spectrosc Relat Phenom. 2014;195:347. doi:10.1016/j.elspec.2014.02.013
  • Matsui F, Fujita M, Ohta T, et al. Selective detection of angular-momentum-polarized auger electrons by atomic stereography. Phys Rev Lett. 2015;114:15501. doi: 10.1103/PhysRevLett.114.015501
  • Hashimoto Y, Taguchi M, Fukami S, et al. Site-sensitive X-ray photoelectron spectroscopy of Fe3O4 by photoelectron diffraction. Surf Interface Anal. 2019;51:115–119. doi: 10.1002/sia.6568
  • Daimon H. New display-type analyzer for the energy and the angular distribution of charged particles. Rev Sci Instrum. 1988;59:545. doi: 10.1063/1.1139884
  • Daimon H, Ino S. Improvement of the spherical mirror analyzer. Rev Sci Instrum. 1990;61:57–60. doi: 10.1063/1.1141923Z
  • Matsui F, Yasuda K, Maejima N, et al. Chemical and magnetic properties of polycrystalline iron surface revealed by Auger electron holography, spectroscopy, and microscopy. Jpn J Appl Phys. 2019;58:110602. doi: 10.7567/1347-4065/ab4d37
  • Fujita Y, Ota H, Matsushita T, et al. Mapping nanometer and micrometer-scale structures at graphite surface by photoelectron diffraction. Surf Interf Anal. 2019;51:74–78. doi: 10.1002/sia.6551
  • Tegze M, Faigel G. X-ray holography with atomic resolution. Nature. 1996;380:49. doi: 10.1038/380049a0
  • Sur B, Rogge RB, Hammond RP, et al. Atomic structure holography using thermal neutrons. Nature. 2001;414:525. doi: 10.1038/35107026
  • Cser L, Török G, Krexner G, et al. Holographic imaging of atoms using thermal neutrons. Phys Rev Lett. 2002;89:175504. doi: 10.1103/PhysRevLett.89.175504
  • Gog T, Len PM, Materlik G, et al. Multiple-energy X-Ray holography: atomic images of hematite (Fe2O3). Phys Rev Lett. 1996;76:3132. doi: 10.1103/PhysRevLett.76.3132
  • Hu W, Hayashi K, Ohwada K, et al. Acute and obtuse rhombohedrons in the local structures of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3. Phys Rev B. 2014;89:140103(R. doi: 10.1103/PhysRevB.89.140103
  • Hu W, Hayashi K, Fukumura T, et al. Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti0.95Co0.05O2 film. Appl Phys Lett. 2015;106:222403. doi: 10.1063/1.4921847
  • Hayashi K, Uchitomi N, Yamagami K, et al. Large as sublattice distortion in sphalerite ZnSnAs2 thin films revealed by x-ray fluorescence holography. J Appl Phys. 2016;119:125703. doi: 10.1063/1.4945004
  • He T, Yang X, Terao T, et al. Pressure-induced superconductivity in AgxBi2−xSe3. Phys Rev B. 2018;97:104503. doi: 10.1103/PhysRevB.97.104503
  • Kimura K, Hayashi K, Hagihara K, et al. In-plane positional fluctuations of Zinc Atoms in single crystal Mg85Zn6Y9 alloy studied by X-ray fluorescence holography. Mater Trans. 2017;58:539–542. doi: 10.2320/matertrans.M2016459
  • Nishioka T, Yamamoto Y, Kimura K, et al. In-plane positional correlations among dopants in 10H type long period stacking ordered Mg75Zn10Y15 alloy studied by X-ray fluorescence holography. Materialia. 2018;3:256–259. doi: 10.1016/j.mtla.2018.09.002
  • Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 2002;50:3845–3857. doi: 10.1016/S1359-6454(02)00191-X
  • Hagihara K, Kinoshita A, Sugino Y, et al. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010;58:6282–6293. doi: 10.1016/j.actamat.2010.07.050
  • Egusa D, Abe E. The structure of long period stacking/order Mg–zn–RE phases with extended non-stoichiometry ranges. Acta Mater. 2012;60:166–178. doi: 10.1016/j.actamat.2011.09.030
  • Hayashi K, Ohoyama K, Orimo S, et al. Neutron holography and diffuse scattering of palladium hydride. Phys Rev B. 2015;91:024102. doi: 10.1103/PhysRevB.91.024102
  • Hayashi K, Lederer M, Fukumoto Y, et al. Determination of site occupancy of boron in 6H–SiC by multiple-wavelength neutron holography. Appl Phys Lett. 2022;120:132101. doi: 10.1063/5.0080895
  • Szakál A, Markó M, Cser L. Imaging local magnetic structure by polarized neutron holography. Europhys Lett. 2018;122:56001. doi: 10.1209/0295-5075/122/56001
  • Andrews SR, Cowley RA. Scattering of X-rays from crystal surfaces. J Phys C. 1985;18:6427. doi: 10.1088/0022-3719/18/35/008
  • Robinson IK. Crystal truncation rods and surface roughness. Phys Rev B. 1986;33:3830. doi: 10.1103/PhysRevB.33.3830
  • Yacoby Y, Sowwan M, Stern E, et al. Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs. Nature Mater. 2002;1:99. doi: 10.1038/nmat735
  • Ocko BM, Watson GM, Wang J. Structure and electrocompression of electrodeposited iodine monolayers on gold (111). J Phys Chem. 1994;98:897. doi: 10.1021/j100054a026
  • Nakamura M. New insights on structural dynamics of electrochemical interface by time-resolved surface X-ray diffraction. Curr Opin Electrochem. 2019;14:200. doi:10.1016/j.coelec.2018.09.001
  • Rao RR, Kolb MJ, Halck NB, et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ Sci. 2017;10:2626. doi: 10.1039/C7EE02307C
  • Shirasawa T, Voegeli W, Arakawa E, et al. Structural change of the Rutile–TiO2(110) surface during the photoinduced wettability conversion. J Phys Chem C. 2016;120:29107. doi: 10.1021/acs.jpcc.6b08448
  • Hussain H, Tocci G, Woolcot T, et al. Structure of a model TiO2 photocatalytic interface. Nature Mater. 2017;16:461. doi: 10.1038/nmat4793
  • Mezger M, Schroder H, Reichert H, et al. Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science. 2008;322:424. doi: 10.1126/science.1164502
  • Yamamoto R, Morisaki H, Sakata O, et al. External electric field dependence of the structure of the electric double layer at an ionic liquid/Au interface. Appl Phys Lett. 2012;101:053122. doi: 10.1063/1.4742920
  • Wakabayashi Y, Takeya J, Kimura T. Sub-Å resolution electron density analysis of the surface of organic rubrene crystals. Phys Rev Lett. 2010;104:066103. doi: 10.1103/PhysRevLett.104.066103
  • Morisaki H, Koretsune T, Hotta C, et al. Large surface relaxation in the organic semiconductor tetracene. Nature Commun. 2014;5:5400. doi: 10.1038/ncomms6400
  • Wakabayashi Y, Nakamura M, Sasaki K, et al. Surface structure of organic semiconductor [n]phenacene single crystals. J Am Chem Soc. 2018;140:14046. doi: 10.1021/jacs.8b08811
  • Yamamura A, Fujii H, Ogasawara H, et al. Sub-molecular structural relaxation at a physisorbed interface with monolayer organic single-crystal semiconductors. Commun Phys. 2020;3:20. doi: 10.1038/s42005-020-0285-7
  • Willmott PR, Pauli SA, Herger R, et al. Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys Rev Lett. 2007;99:155502. doi: 10.1103/PhysRevLett.99.155502
  • Pauli SA, Leake SJ, Delley B, et al. Evolution of the interfacial structure of LaAlO3 on SrTiO3. Phys Rev Lett. 2011;106:036101. doi: 10.1103/PhysRevLett.106.036101
  • Yamamoto R, Bell C, Hikita Y, et al. Structural comparison of n-type and p-type LaAlO3/SrTiO3 interfaces. Phys Rev Lett. 2011;107:036104. doi: 10.1103/PhysRevLett.107.036104
  • Fong DD, Cionca C, Yacoby Y, et al. Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements. Phys Rev B. 2005;71:144112. doi: 10.1103/PhysRevB.71.144112
  • Fister TT, Zhou H, Luo Z, et al. Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures. APL Mater. 2014;2:021102. doi: 10.1063/1.4865160
  • Anada M, Kowa K, Maeda H, et al. Spatial coherence of the insulating phase in quasi-two-dimensional LaNiO3 films. Phys Rev B. 2018;98:014105–1–8. doi: 10.1103/PhysRevB.98.014105
  • Nagai K, Anada M, Kowa K, et al. Quantitative measurement of structural fluctuation at LaNiO3/LaAlO3 interfaces as a function of thickness. Phys Rev Mater. 2023;7:043604. doi: 10.1103/PhysRevMaterials.7.043604
  • Shirasawa T, Tsunoda J, Hiorahara T, et al. Structure of a Bi/Bi2Te3 heteroepitaxial film studied by x-ray crystal truncation rod scattering. Phys Rev B. 2013;87:075449. doi: 10.1103/PhysRevB.87.075449
  • Klauk H. Organic electronics: materials, manufacturing and applications. New Jersey: Wiley-VCH; 2006.
  • Takeya J, Yamagishi M, Tominari Y, et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl Phys Lett. 2007;90:102120. doi: 10.1063/1.2711393
  • Fratini S, Mayou D, Ciuchi S. The transient localization scenario for charge transport in crystalline organic materials. Adv Funct Mater. 2016;26:2292. doi: 10.1002/adfm.201502386
  • Gidalevitz D, Feidenhans’l R, Smilgies D, et al. X- ray scattering from surfaces of organic crystals. Surf Rev Lett. 1997;4:721. doi: 10.1142/S0218625X97000729
  • Vollmer A, Ovsyannikov R, Gorgoi M, et al. Two dimensional band structure mapping of organic single crystals using the new generation electron energy analyzer ARTOF. J Electron Spectroscopy Related Phenomena. 2012;185:55. doi: 10.1016/j.elspec.2012.01.003
  • da Silva Filho DA, Kim E-G, Brédas J-L. Transport properties in the rubrene crystal: electronic coupling and vibrational reorganization energy. Adv Matter. 2005;17:1072. doi: 10.1002/adma.200401866
  • Daimon H, Nakatani T, Imada S, et al. Strong circular dichroism in Photoelectron Diffraction from Nonchiral, nonmagnetic material - direct observation of rotational motion of electrons. Jpn J Appl Phys. 1993;32 Part 2:L1480. doi: 10.1143/JJAP.32.L1480
  • Matsumoto T, Matsui F, Matsushita T, et al. Stereophotograph of InP(001). E-J Surf Sci Nanotech. 2009;7:181–185. doi: 10.1380/ejssnt.2009.181
  • Matsui F, Matsushita T, Daimon H. Stereo atomscope and diffraction spectroscopy-atomic site specific property analysis. J Electron Spectros Relat Phenomena. 2010;178-179:221–240. doi: 10.1016/j.elspec.2009.09.001