172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Region-based cascading impact analysis in critical infrastructure systems

, &
Pages 293-307 | Received 21 Jul 2023, Accepted 05 Jan 2024, Published online: 21 Jan 2024

References

  • Busby, J. W., Baker, K., Bazilian, M. D., Gilbert, A. Q., Grubert, E., Rai, V. … Webber, M. E. (2021). Cascading risks: Understanding the 2021 winter blackout in Texas. Energy Research & Social Science, 77, 102106. https://doi.org/10.1016/j.erss.2021.102106
  • Cabinet Office. (2010). Strategic framework and policy statement on improving the resilience of critical infrastructure to disruption from natural hazards. Cabinet Office.
  • Choi, S., Kim, J., Kang, S., & Lee, D. (2018). Evaluation of a water resources system based on energy efficiency. Journal of the Korean Society of Hazard Mitigation, 18(7), 597–604. https://doi.org/10.9798/KOSHAM.2018.18.7.597
  • Cui, L., Kumara, S., & Albert, R. (2010). Complex networks: An engineering view. IEEE Circuits and Systems Magazine, 10(3), 10–25. https://doi.org/10.1109/MCAS.2010.937883
  • Donald, J. (2021, October). Winter Storm Uri 2021: The Economic Impact of the Storm. Fiscal Notes: A Review of the Texas Economy. Retrieved from https://comptroller.texas.gov/economy/fiscal-notes/2021/oct/winter-storm-impact.php
  • Eusgeld, I., Nan, C., & Dietz, S. (2011). “System-of-systems” approach for interdependent critical infrastructures. Reliability Engineering & System Safety, 96(6), 679–686. https://doi.org/10.1016/j.ress.2010.12.010
  • Fereshtehnejad, E., Gidaris, I., Rosenheim, N., Tomiczek, T., Padgett, J. E., Cox, D. T. … Peacock, W. G. (2021). Probabilistic risk assessment of coupled natural-physical-social systems: Cascading impact of hurricane-induced damages to civil infrastructure in Galveston, Texas. Natural Hazards Review, 22(3), 04021013. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000459
  • Hasan, S., & Foliente, G. (2015). Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: Emerging R&D challenges. Natural Hazards, 78(3), 2143–2168. https://doi.org/10.1007/s11069-015-1814-7
  • Johansen, C., & Tien, I. (2018). Probabilistic multi-scale modeling of interdependencies between critical infrastructure systems for resilience. Sustainable and Resilient Infrastructure, 3(1), 1–15. https://doi.org/10.1080/23789689.2017.1345253
  • Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  • Kovács, P. (2015). Minimum-cost flow algorithms: An experimental evaluation. Optimization Methods and Software, 30(1), 94–127. https://doi.org/10.1080/10556788.2014.895828
  • Lam, C. Y., & Shimizu, T. (2021). A network analytical framework to analyze infrastructure damage based on earthquake cascades: A study of earthquake cases in Japan. International Journal of Disaster Risk Reduction, 54, 102025. https://doi.org/10.1016/j.ijdrr.2020.102025
  • Lam, C. Y., & Tai, K. (2018). Modeling infrastructure interdependencies by integrating network and fuzzy set theory. International Journal of Critical Infrastructure Protection, 22, 51–61. https://doi.org/10.1016/j.ijcip.2018.05.005
  • Laugé, A., Hernantes, J., & Sarriegi¸, J. M. (2015). Critical infrastructure dependencies: A holistic, dynamic and quantitative approach. International Journal of Critical Infrastructure Protection, 8, 16–23. https://doi.org/10.1016/j.ijcip.2014.12.004
  • Lee, S., Hwang, S., Park, M., & Lee, H. S. (2018). Damage propagation from component level to system level in the electricity sector. Journal of Infrastructure Systems, 24(3), 04018016. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000437
  • Lee, S., Park, M., & Lee, H. (2018). Robustness estimation for power and water supply network: In the context of failure propagation. Korean Journal of Construction Engineering and Management, 19(3), 33–42. https://doi.org/10.6106/KJCEM.2018.19.3.033
  • Liu, S., Yin, C., Chen, D., Lv, H., & Zhang, Q. (2021). Cascading failure in multiple critical infrastructure interdependent networks of syncretic railway system. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5740–5753. https://doi.org/10.1109/TITS.2021.3057404
  • Mao, Q., & Li, N. (2018). Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems. Natural Hazards, 93(1), 315–337. https://doi.org/10.1007/s11069-018-3302-3
  • Mata, A. S. D. (2020). Complex networks: A mini-review. Brazilian Journal of Physics, 50(5), 658–672. https://doi.org/10.1007/s13538-020-00772-9
  • Mohanty, S. K., Chatterjee, R., & Shaw, R. (2020). Building resilience of critical infrastructure: A case of impacts of cyclones on the power sector in Odisha. Climate, 8(6), 73. https://doi.org/10.3390/cli8060073
  • Nazarnia, H., & Sarmasti, H. (2018). Characterizing infrastructure resilience in disasters using dynamic network analysis of consumers’ service disruption patterns. Civil Engineering Journal, 4(10), 2356–2372. https://doi.org/10.28991/cej-03091165
  • O’Reilly, G. P., Jrad, A., Kelic, A., & LeClaire, R. (2007). Telecom critical infrastructure simulations: Discrete-event simulation vs. dynamic simulation how do they compare? IEEE GLOBECOM 2007 – IEEE Global Telecommunications Conference (pp. 2597–2601). Washington, DC, USA. https://doi.org/10.1109/GLOCOM.2007.493
  • Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22–33. https://doi.org/10.1111/jfr3.12288
  • Pescaroli, G., & Alexander, D. (2015). A definition of cascading disasters and cascading effects: Going beyond the “toppling dominos” metaphor. Global Risk Forum Davos Planet@risk, 3(1), 58–67.
  • Pescaroli, G., & Alexander, D. (2016). Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Natural Hazards, 82(1), 175–192. https://doi.org/10.1007/s11069-016-2186-3
  • Rehak, D., Markuci, J., Hromada, M., & Barcova, K. (2016). Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system. International Journal of Critical Infrastructure Protection, 14, 3–17. https://doi.org/10.1016/j.ijcip.2016.06.002
  • Rehak, D., Senovsky, P., Hromada, M., Lovecek, T., & Novotny, P. (2018). Cascading impact assessment in a critical infrastructure system. International Journal of Critical Infrastructure Protection, 22, 125–138. https://doi.org/10.1016/j.ijcip.2018.06.004
  • Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems Magazine, 21(6), 11–25. https://doi.org/10.1109/37.969131
  • Shin, J., Yoon, K., Choi, D., & Kim, H. (2014). Disaster consequence analysis on blackout considering interdependency matrix and resilience in critical infrastructure. Journal of the Korean Society of Hazard Mitigation, 14(4), 189–198. https://doi.org/10.9798/KOSHAM.2014.14.4.189
  • Stapelberg, R. F. (2008). Infrastructure systems interdependencies and risk informed decision making (RIDM): Impact scenario analysis of infrastructure risks induced by natural, technological and intentional hazards. Journal of Systemics Cybernetics and Informatics, 6(5), 21–27.
  • Suppasri, A., Maly, E., Kitamura, M., Syamsidik Pescaroli, G., Imamura, D., Alexander, F., & Imamura, F. (2021). Cascading disasters triggered by tsunami hazards: A perspective for critical infrastructure resilience and disaster risk reduction. International Journal of Disaster Risk Reduction, 66, 102597. https://doi.org/10.1016/j.ijdrr.2021.102597
  • Svegrup, L., Johansson, J., & Hassel, H. (2019). Integration of critical infrastructure and societal consequence models: Impact on Swedish power system mitigation decisions. Risk Analysis, 39(9), 1970–1996. https://doi.org/10.1111/risa.13272
  • Syed, Y., Uma, S. R., Prasanna, R., & Wotherspoon, L. (2021). ‘End to end’ linkage structure for integrated impact assessment of infrastructure networks under natural hazards. Bulletin of the New Zealand Society for Earthquake Engineering, 54(2), 153–162. https://doi.org/10.5459/bnzsee.54.2.153-162
  • Thacker, S., Pant, R., & Hall, J. W. (2017). System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures. Reliability Engineering & System Safety, 167, 30–41. https://doi.org/10.1016/j.ress.2017.04.023
  • Wang, F., Magoua, J. J., Li, N., & Fang, D. (2020). Assessing the impact of systemic heterogeneity on failure propagation across interdependent critical infrastructure systems. International Journal of Disaster Risk Reduction, 50, 101818. https://doi.org/10.1016/j.ijdrr.2020.101818
  • Wu, Y., Chen, Z., Zhao, X., Gong, H., Su, X., & Chen, Y. (2021). Propagation model of cascading failure based on discrete dynamical system. Reliability Engineering & System Safety, 209, 107424. https://doi.org/10.1016/j.ress.2020.107424
  • Zhang, P., & Peeta, S. (2011). A generalized modeling framework to analyze interdependencies among infrastructure systems. Transportation Research Part B: Methodological, 45(3), 553–579. https://doi.org/10.1016/j.trb.2010.10.001
  • Zimmerman, R. (2001). Social implications of infrastructure network interactions. Journal of Urban Technology, 8(3), 97–119. https://doi.org/10.1080/106307301753430764
  • Zuccaro, G., De Gregorio, D., & Leone, M. F. (2018). Theoretical model for cascading effects analyses. International Journal of Disaster Risk Reduction, 30(Part B), 199–215. https://doi.org/10.1016/j.ijdrr.2018.04.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.