831
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mapping the Unheard: Analyzing Tradeoffs Between Fisheries and Offshore Wind Farms Using Multicriteria Decision Analysis

ORCID Icon, , , , , , & ORCID Icon show all
Pages 536-554 | Received 10 Dec 2022, Accepted 16 Aug 2023, Published online: 22 Jan 2024

References

  • AWS Truepower/NREL. 2011. Annual average offshore wind speed (m/s) at a 90m height, Pacific Coast U.S. Accessed February 24, 2022. https://databasin.org/datasets/6481496a7b0241569855485ebb26ae33/.
  • Bureau of Ocean Energy Management (BOEM). 2018. Request for interest in California offshore wind. https://www.boem.gov/Request-for-Interest-in-California-Offshore-Wind.
  • California Department of Fish and Wildlife. 2022. Final California commercial landings. Data set. https://wildlife.ca.gov/Fishing/Commercial/Landings#260042586-2019.
  • California Energy Commission. 2019. Offshore renewable energy. Accessed December 20, 2022. https://www.energy.ca.gov/programs-and-topics/topics/renewable-energy/offshore-renewable-energy.
  • Chaouachi, A., C. Felix Covrig, and M. Ardelean. 2017. Multi-criteria selection of offshore wind farms: Case study for the Baltic States. Energy Policy 103 (April):179–92. doi: 10.1016/j.enpol.2017.01.018.
  • Dwyer, J., and D. Bidwell. 2019. Chains of trust: Energy justice, public engagement, and the first offshore wind farm in the United States. Energy Research & Social Science 47 (January):166–76. doi: 10.1016/j.erss.2018.08.019.
  • Ferguson, M. D., D. Evensen, L. A. Ferguson, D. Bidwell, J. Firestone, T. L. Dooley, and C. R. Mitchell. 2021. Uncharted waters: Exploring coastal recreation impacts, coping behaviors, and attitudes towards offshore wind energy development in the United States. Energy Research & Social Science 75 (May):102029. doi: 10.1016/j.erss.2021.102029.
  • Fetanat, A., and E. Khorasaninejad. 2015. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management 109 (June):17–28. doi: 10.1016/j.ocecoaman.2015.02.005.
  • Fishburn, P. C. 1967. Letter to the editor—Additive utilities with incomplete product sets: Application to priorities and assignments. Operations Research 15 (3):537–42. doi: 10.1287/opre.15.3.537.
  • Garner, K., and D. Maroon. 2022. California Energy Commission releases milestone offshore wind energy report and sets maximum feasible capacity and megawatt planning goals for 2030 and 2045. Real Estate, Land Use & Environmental Law Blog, August 15. https://www.realestatelanduseandenvironmentallaw.com/california-energy-commission-releases-milestone-offshore-wind-energy-report-sets-maximum-feasible-capacity-and-megawatt-planning-goals-for-2030-and-2045.html.
  • Gonyo, S. B., C. S. Fleming, A. Freitag, and T. L. Goedeke. 2021. Resident perceptions of local offshore wind energy development: Modeling efforts to improve participatory processes. Energy Policy 149 (February):112068. doi: 10.1016/j.enpol.2020.112068.
  • Grassi, S., N. Chokani, and R. S. Abhari. 2012. Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa. Energy Policy 45 (June):73–85. doi: 10.1016/j.enpol.2012.01.061.
  • Haggett, C., T. Ten Brink, A. Russell, M. Roach, J. Firestone, T. Dalton, and B. McCay. 2020. Offshore wind projects and fisheries: Conflict and engagement in the United Kingdom and the United States. Oceanography 33 (4):38–47. doi: 10.5670/oceanog.2020.404.
  • Herman, J., and W. Usher. 2017. SALib: An open-source Python library for sensitivity analysis. The Journal of Open Source Software 2 (9):97. doi: 10.21105/joss.00097.
  • Iwanaga, T., W. Usher, and J. Herman. 2022. Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling 4 (May):18155. doi: 10.18174/sesmo.18155.
  • Mahdy, M., and A. S. Bahaj. 2018. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy 118 (April):278–89. doi: 10.1016/j.renene.2017.11.021.
  • Mekonnen, A. D., and P. V. Gorsevski. 2015. A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews 41 (January):162–77. doi: 10.1016/j.rser.2014.08.030.
  • Mooney, A., M. Andersson, and J. Stanley. 2020. Acoustic impacts of offshore wind energy on fishery resources: An evolving source and varied effects across a wind farm’s lifetime. Oceanography 33 (4):82–95. doi: 10.5670/oceanog.2020.408.
  • Patel, M., M. Vashi, and B. Bhatt. 2017. SMART-multi-criteria decisionmaking technique for use in planning activities. Proceedings of New Horizons in Civil Engineering, 1-6 (NHCE-2017).
  • Russell, A., S. Bingaman, and H.-M. Garcia. 2021. Threading a moving needle: The spatial dimensions characterizing US offshore wind policy drivers. Energy Policy 157 (October):112516. doi: 10.1016/j.enpol.2021.112516.
  • Saaty, T. L. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15 (3):234–81. doi: 10.1016/0022-2496(77)90033-5.
  • Saaty, T. L. 1988. What is the analytic hierarchy process? Mathematical Models for Decision Support 15 (3):109–21. doi: 10.1007/978-3-642-83555-1_5.
  • Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto. 2004. Sensitivity analysis in practice: A guide to assessing scientific models. Sydney, Australia: Halsted Press EBooks.
  • Sánchez-Lozano, J. M., M. S. García-Cascales, and M. T. Lamata. 2016. GIS-based onshore wind farm site selection using fuzzy multi-criteria decision making methods. Evaluating the case of Southeastern Spain. Applied Energy 171 (June):86–102. doi: 10.1016/j.apenergy.2016.03.030.
  • Shao, M., Z. Han, J. Sun, C. Xiao, S. Zhang, and Y. Zhao. 2020. A review of multi-criteria decision making applications for renewable energy site selection. Renewable Energy 157 (September):377–403. doi: 10.1016/j.renene.2020.04.137.
  • Simanaviciene, R., and L. Ustinovichius. 2010. Sensitivity analysis for multiple criteria decision making methods: TOPSIS and SAW. Procedia—Social and Behavioral Sciences 2 (6):7743–44. doi: 10.1016/j.sbspro.2010.05.207.
  • Tegou, L.-I., H. Polatidis, and D. A. Haralambopoulos. 2010. Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management 91 (11):2134–47. doi: 10.1016/j.jenvman.2010.05.010.
  • Thakkar, J. J. 2021. Weighted aggregated sum product assessment (WASPAS). In Multi-criteria decision making: Studies in systems, decision and control, vol. 336, 253–79. Singapore: Springer International. doi: 10.1007/978-981-33-4745-8_15.
  • Thomsen, F., K. Lüdemann, R. Kafemann, and W. Piper. 2006. Effects of offshore wind farm noise on marine mammals and fish. Biola, on Behalf of COWRIE Ltd 62 (July):1–62.
  • Triantaphyllou, E., and S. H. Mann. 1989. An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox. Decision Support Systems 5 (3):303–12. doi: 10.1016/0167-9236(89)90037-7.
  • Triantaphyllou, E., and E. Triantaphyllou. 2000. Multi-criteria decision making methods. In Multi-criteria decision making methods: A comparative study. Applied optimization, 44. Boston, MA: Springer.
  • Uzun, B., M. Taiwo, A. Syidanova, and D. U. Ozsahin. 2021. The technique for order of preference by similarity to ideal solution (TOPSIS). In Application of multi-criteria decision analysis in environmental and civil engineering, ed. D. U. Ozsahin, H. Gökçekuş, B. Uzun, and J. LaMoreaux, 25–30. Cham, Switzerland: Springer Nature. doi: 10.1007/978-3-030-64765-0_4.
  • Vaidya, O. S., and S. Kumar. 2006. Analytic hierarchy process: An overview of applications. European Journal of Operational Research 169 (1):1–29. doi: 10.1016/j.ejor.2004.04.028.
  • Wahlberg, M., and H. Westerberg. 2005. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecology Progress Series 288:295–309. doi: 10.3354/meps288295.
  • The White House. 2022. Fact sheet: Biden–Harris administration announces new actions to expand U.S. offshore wind energy. September 15. https://www.whitehouse.gov/briefing-room/statements-releases/2022/09/15/fact-sheet-biden-harris-administration-announces-new-actions-to-expand-u-s-offshore-wind-energy/.
  • Wu, B., T. Leung Yip, L. Xie, and Y. Wang. 2018. A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Engineering 168 (November):121–32. doi: 10.1016/j.oceaneng.2018.08.065.
  • Wu, Y., J. Zhang, J. Yuan, S. Geng, and H. Zhang. 2016. Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China. Energy Conversion and Management 113 (April):66–81. doi: 10.1016/j.enconman.2016.01.020.
  • Zavadskas, E. K., Z. Turskis, J. Antucheviciene, and A. Zakarevičius. 2012. Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika 122 (6):3–6. doi: 10.5755/j01.eee.122.6.1810.
  • Zhang, X.-Y., X.-K. Wang, S.-M. Yu, J.-Q. Wang, and T.-L. Wang. 2018. Location selection of offshore wind power station by consensus decision framework using picture fuzzy modelling. Journal of Cleaner Production 202 (November):980–92. doi: 10.1016/j.jclepro.2018.08.172.
  • Zhang, Z., H. Hu, D. Yin, S. Kashem, R. Li, H. Cai, D. Perkins, and S. Wang. 2018. A CyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management. International Journal of Digital Earth 12 (11):1364–81. doi: 10.1080/17538947.2018.1543363.
  • Zilinskas, A. 2001. Review of making hard decisions with decision tools. Interfaces 31:127–29.