1,711
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of protective cladding on the fire performance of vertically loaded cross-laminated timber (CLT) wall panels

, , &

References

  • Bartlett, A. I., Hadden, R. M., Bisby, L. A., & Law, A. (2015, February 2-4). Analysis of cross-laminated timber charring rates upon exposure to non-standard heating conditions [Paper presentation]. Fire and Materials, San Francisco, USA (pp. 667-681). Interscience Communications Ltd.
  • Buchanan, A. H., & Abu, A. K. (2017). Structural design for fire safety (2nd ed.). Wiley.
  • CEN. (2004). EN1995-1-2. In Eurocode 5. Design of timber structures. Part 1-2: General – Structural fire design. Comité Européen de Normalisation.
  • Dârmon, R., & Lalu, O. (2019). The fire performance of cross laminated timber beams. Procedia Manufacturing, 32, 121–128. https://doi.org/10.1016/j.promfg.2019.02.192
  • European Committee for Standardisation. (2015). EN 16351: Timber structures – Cross Laminated Timber – Requirements.
  • Fragiacomo, M., Menis, A., Clemente, I., Bochicchio, G., and Tessadri, B. (2012). Experimental and numerical behaviour of cross- Laminated timber floors in fire conditions [Paper presentation]. World Conference on Timber Engineering, Auckland New Zealand, 36–43.
  • Frangi, A., Fontana, M., Hugi, E., & Jübstl, R. (2009, November). Experimental analysis of cross-laminated timber panels in fire. Fire Safety Journal, 44(8), 1078–1087. https://doi.org/10.1016/j.firesaf.2009.07.007
  • Frangi, A., Fontana, M., Knobloch, M., & Bochicchio, G. (2008). Fire behaviour of cross-laminated solid timber panels. Fire Safety Science, 9, 1279–1290. https://doi.org/10.3801/IAFSS.FSS.9-1279
  • Friquin, K. L. (2011, August). Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber. Fire and Materials, 35(5), 303–327. https://doi.org/10.1002/fam.1055
  • Harte, A., McPolin, D., Sikora, K., O’Neill, C., & O’Ceallaigh, C. (2014, August 28-29). Irish timber – Characterisation, potential and innovation [Paper presentation]. Civil Engineering Research in Ireland, Belfast, UK (pp. 63–68). Civil Engineering Research Association of Ireland.
  • ISO 834-1. (1999). Fire resistance test - elements of building construction, Part 1: General requirements. International Organization for Standardization.
  • Kippel, M., Leyder, C., Frangi, A., & Fontana, M. (2014). Fire tests on loaded cross-laminated timber wall and floor elements. Fire Safety Science, 11, 626–639. https://doi.org/10.3801/IAFSS.FSS.11-626
  • Lau, P. W. C., White, R., & Van Zeeland, I. (1999, September). Modelling the charring behaviour of structural lumber. Fire and Materials, 23(5), 209–216. https://doi.org/10.1002/(SICI)1099-1018(199909/10)23:5<209:AID-FAM685>3.0.CO;2-A
  • Mestek, P., Kreuzinger, H., & Winter, S. (2008, June 2-5). Design of Cross Laminated Timber (CLT) [Paper presentation]. World Conference on Timber Engineering (p. 8), Miyazaki, Japan, 156–163.
  • Miyamoto, B., Bechle, N. J., Rammer, D. R., & Zelinka, S. L. (2021, February). A small-scale test to examine heat delamination in Cross Laminated Timber (CLT). Forests, 12(2), 232. https://doi.org/10.3390/f12020232
  • Muszyński, L., Gupta, R., Hyun Hong, S., Osborn, N., & Pickett, B. (2019, July). Fire resistance of unprotected cross-laminated timber (CLT) floor assemblies produced in the USA. Fire Safety Journal, 107, 126–136. https://doi.org/10.1016/j.firesaf.2018.12.008
  • O’ceallaigh, C., Sikora, K., & Harte, A. (2018, August). The influence of panel lay-up on the characteristic bending and rolling shear strength of CLT. Buildings, 8(9), 114. https://doi.org/10.3390/buildings8090114
  • Östman, B., Mikkola, E., Stein, R., Frangi, A., König, J., Dhima, D., Hakkarainen, T., & Bregulla, J. (2010). Fire safety in timber buildings: Technical guideline for Europe. In B. Östman (Ed.), SP report (pp. 140). SP Technical Research Institute of Sweden.
  • Pope, I., Hidalgo, J. P., & Torero, J. L. (2021, March). A correction method for thermal disturbances induced by thermocouples in a low-conductivity charring material. Fire Safety Journal, 120, 103077. https://doi.org/10.1016/j.firesaf.2020.103077
  • Sandoli, A., D’Ambra, C., Ceraldi, C., Calderoni, B., & Prota, A. (2021, February). Sustainable cross-laminated timber structures in a seismic area: Overview and future trends. Applied Sciences, 11(5), 2078. https://doi.org/10.3390/app11052078
  • Schmid, J., Konig, J., and Kohler, J. (2010, June 20-24). Fire-exposed cross-laminated timber-modelling and tests. Presented at the World Conference on Timber Engineering, Trentino, Italy, 3268–3276.
  • Suzuki, J., Mizukami, T., Naruse, T., & Araki, Y. (2016, Jul). Fire resistance of timber panel structures under standard fire exposure. Fire Technology, 52(4), 1015–1034. https://doi.org/10.1007/s10694-016-0578-2
  • Wiesner, F., Bisby, L. A., Bartlett, A. I., Hidalgo, J. P., Santamaria, S., Deeny, S., & Hadden, R. M. (2019, January). Structural capacity in fire of laminated timber elements in compartments with exposed timber surfaces. Engineering Structures, 179, 284–295. https://doi.org/10.1016/j.engstruct.2018.10.084
  • Wiesner, F., Hadden, R., Deeny, S., & Bisby, L. (2022, March). Structural fire engineering considerations for cross-laminated timber walls. Construction and Building Materials, 323, 126605. https://doi.org/10.1016/j.conbuildmat.2022.126605
  • Wiesner, F., Randmael, F., Wan, W., Bisby, L., & Hadden, R. M. (2017, July). Structural response of cross-laminated timber compression elements exposed to fire. Fire Safety Journal, 91, 56–67. https://doi.org/10.1016/j.firesaf.2017.05.010
  • Yang, T.-H., Wang, S.-Y., Tsai, M.-J., & Lin, C.-Y. (2009, February). The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment, 44(2), 231–236. https://doi.org/10.1016/j.buildenv.2008.02.010