967
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Monitoring the health of bridges using accelerations from a fleet of vehicles without knowing individual axle weights

, &

References

  • Blab, R., & Litzka, J. (1995). Measurements of the lateral distribution of heavy vehicles and its effects on the design of road pavements. Proceedings of the international symposium on heavy vehicle weights and dimensions, road transport technology, University of Michigan.
  • Carden, E. P., & Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4), 355–377. https://doi.org/10.1177/1475921704047500
  • Chang, P. C., Flatau, A., & Liu, S. -C. (2003). Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267. https://doi.org/10.1177/1475921703036169
  • Corbally, R., & Malekjafarian, A. (2022). Bridge damage detection using operating deflection shape ratios obtained from a passing vehicle. Journal of Sound and Vibration, 537, 117225. https://doi.org/10.1016/j.jsv.2022.117225
  • Cunha, A., Caetano, E., Magalhães, F., & Moutinho, C. (2013). Recent perspectives in dynamic testing and monitoring of bridges. Structural Control & Health Monitoring, 20(6), 853–877. https://doi.org/10.1002/stc.1516
  • El-Hattab, A., Uddin, N., & Obrien, E. (2015). Drive-by bridge damage detection using apparent profile. First international conference on advances in Civil Infrastructure And Construction Materials (CISM).
  • González, A., OBrien, E. J., & McGetrick, P. (2012). Identification of damping in a bridge using a moving instrumented vehicle. Journal of Sound and Vibration, 331(18), 4115–4131. https://doi.org/10.1016/j.jsv.2012.04.019
  • Graybeal, B. A., Phares, B. M., Rolander, D. D., Moore, M., & Washer, G. (2002). Visual inspection of highway bridges. Journal of Nondestructive Evaluation, 21(3), 67–83. https://doi.org/10.1023/A:1022508121821
  • Guerson, L., Van Loo, H., Francheschi, L., Tani, V., & Valente, A. (2016). Development of a WIM data quality management system for the Brazilian Federal Road Network. In B. Jacob (Ed.), Proceedings of the 7th International Conference on Weigh-In-Motion (ICWIM 7). Wiley.
  • Hao, S. (2010). I-35W bridge collapse. Journal of Bridge Engineering, 15(5), 608–614. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000090
  • Huseynov, F., Fidler, P., Bravo-Haro, M., Vilde, V., Schooling, J., & Middleton, C. (2022, August 8-12). Setting up a real-time train load monitoring system in the UK using bridge weigh-in motion technology – A case study. 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure.
  • ISO. (2016). Mechanical vibration — Road surface profiles — Reporting of measured data.
  • Keenahan, J., Ren, Y., & OBrien, E. J. (2020). Determination of road profile using multiple passing vehicle measurements. Structure and Infrastructure Engineering, 16(9), 1262–1275. https://doi.org/10.1080/15732479.2019.1703757
  • Khan, M. A., McCrum, D. P., OBrien, E. J., Bowe, C., Hester, D., McGetrick, P. J., O’higgins, C., Casero, M., & Pakrashi, V. (2022). Re-deployable sensors for modal estimates of bridges and detection of damage-induced changes in boundary conditions. Structure and Infrastructure Engineering, 18(8), 1177–1191. https://doi.org/10.1080/15732479.2021.1887292
  • Kliewer, K., & Glisic, B. (2017). Normalized curvature ratio for damage detection in beam-like structures. Frontiers in Built Environment, 3, 50. https://doi.org/10.3389/fbuil.2017.00050
  • Li, Y. (2010). Hypersensitivity of strain-based indicators for structural damage identification: A review. Mechanical Systems and Signal Processing, 24(3), 653–664. https://doi.org/10.1016/j.ymssp.2009.11.002
  • Lin, C., & Yang, Y. (2005). Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification. Engineering Structures, 27(13), 1865–1878. https://doi.org/10.1016/j.engstruct.2005.06.016
  • Lydon, M., Robinson, D., Taylor, S., Amato, G., Brien, E. J., & Uddin, N. (2017). Improved axle detection for bridge weigh-in-motion systems using fiber optic sensors. Journal of Civil Structural Health Monitoring, 7(3), 325–332. https://doi.org/10.1007/s13349-017-0229-4
  • Malekjafarian, A., McGetrick, P. J., & OBrien, E. J. (2015). A review of indirect bridge monitoring using passing vehicles. Shock and Vibration, 2015, 1–16. https://doi.org/10.1155/2015/286139
  • Malekjafarian, A., & O’brien, E. J. (2014, August 28-29). Application of output-only modal method in monitoring of bridges using an instrumented vehicle. (Ed.),^(Eds.). Civil Engineering Research in Ireland.
  • Martinez, D., Malekjafarian, A., & OBrien, E. (2020). Bridge health monitoring using deflection measurements under random traffic. Structural Control & Health Monitoring, 27(9), e2593. https://doi.org/10.1002/stc.2593
  • McGeown, C., Huseynov, F., Hester, D., McGetrick, P., Obrien, E., & Pakrashi, V. (2021). Using measured rotation on a beam to detect changes in its structural condition. Journal of Structural Integrity and Maintenance, 6(3), 159–166. https://doi.org/10.1080/24705314.2021.1906092
  • McGetrick, P. J., Gonzlez, A., & OBrien, E. J. (2009). Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters. Insight-Non-Destructive Testing and Condition Monitoring, 51(8), 433–438. https://doi.org/10.1784/insi.2009.51.8.433
  • O’brien, E. J., & Keenahan, J. (2015). Drive-by damage detection in bridges using the apparent profile. Structural Control & Health Monitoring, 22(5), 813–825. https://doi.org/10.1002/stc.1721
  • O’brien, E. J., McGetrick, P., & González, A. (2014). A drive-by inspection system via vehicle moving force identification. Smart Structures and Systems, 13(5), 821–848. https://doi.org/10.12989/sss.2014.13.5.821
  • Peng, W., Tang, Z., Wang, D., Cao, X., Dai, F., & Taciroglu, E. (2020). A forensic investigation of the Xiaoshan ramp bridge collapse. Engineering Structures, 224, 111203. https://doi.org/10.1016/j.engstruct.2020.111203
  • Quirke, P., Bowe, C., OBrien, E. J., Cantero, D., Antolin, P., & Goicolea, J. M. (2017). Railway bridge damage detection using vehicle-based inertial measurements and apparent profile. Engineering Structures, 153, 421–442. https://doi.org/10.1016/j.engstruct.2017.10.023
  • Ren, Y., OBrien, E. J., Cantero, D., & Keenahan, J. (2022). Railway bridge condition monitoring using numerically calculated responses from batches of trains. Applied Sciences, 12(10), 4972. https://doi.org/10.3390/app12104972
  • Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-entropy method: A unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning (Vol. 133). Springer.
  • Siringoringo, D. M., & Fujino, Y. (2012). Estimating bridge fundamental frequency from vibration response of instrumented passing vehicle: Analytical and experimental study. Advances in Structural Engineering, 15(3), 417–433. https://doi.org/10.1260/1369-4332.15.3.417
  • Udoeyo, F. (2020). Structural analysis. Temple University Press.
  • Van Loo, H., & Lees, A. (2015). Standard quality checks for weigh-in-motion data. Paper number ITS-2156, Proceedings of the ITS World Congress.
  • Walker, D., & Cebon, D. (2012). The metamorphosis of LTPP traffic data. 6th International Conference on Weigh-In-Motion (ICWIM 6) International Society for Weigh-In-MotionInstitut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTARR). International Transport ForumForum of European National Highway Research Laboratories (FEHRL) Transportation Research BoardFederal Highway Administration.
  • Wang, S. (2023). Bridge health monitoring using MFI and a partially instrumented fleet of vehicles. University College Dublin.
  • Xu, H., Liu, Y., Wang, Z., Shi, K., Zhang, B., & Yang, Y. (2022). General contact response of single-axle two-mass test vehicles for scanning bridge frequencies considering suspension effect. Engineering Structures, 270, 114880. https://doi.org/10.1016/j.engstruct.2022.114880
  • Yang, Y. B., Lin, C., & Yau, J. (2004). Extracting bridge frequencies from the dynamic response of a passing vehicle. Journal of Sound and Vibration, 272(3–5), 471–493. https://doi.org/10.1016/S0022-460X(03)00378-X
  • Yang, Y. B., Wang, B., Wang, Z., Shi, K., Xu, H., Zhang, B., & Wu, Y. (2020). Bridge surface roughness identified from the displacement influence lines of the contact points by two connected vehicles. International Journal of Structural Stability and Dynamics, 20(14), 2043003. https://doi.org/10.1142/S0219455420430038
  • Yang, Y. B., & Yang, J. P. (2018). State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. International Journal of Structural Stability and Dynamics, 18(2), 1850025. https://doi.org/10.1142/S0219455418500256
  • Yang, Y. B., Yang, J. P., Wu, Y., & Zhang, B. (2019). Vehicle scanning method for bridges. John Wiley & Sons.
  • Yang, Y. B., Zhang, B., Qian, Y., & Wu, Y. T. (2018). Contact-point response for modal identification of bridges by a moving test vehicle. International Journal of Structural Stability and Dynamics, 18(5), 1850073. https://doi.org/10.1142/S0219455418500736
  • Zhang, Y., Wang, L., & Xiang, Z. (2012). Damage detection by mode shape squares extracted from a passing vehicle. Journal of Sound and Vibration, 331(2), 291–307. https://doi.org/10.1016/j.jsv.2011.09.004
  • Zhou, X. -Y., Treacy, M., Schmidt, F., Brühwiler, E., Toutlemonde, F., & Jacob, B. (2015). Effect on bridge load effects of vehicle transverse in-lane position: A case study. Journal of Bridge Engineering, 20(12), 04015020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000763