713
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Feature subset selection in structural health monitoring data using an advanced binary slime mould algorithm

&

References

  • Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M. J., & Mirjalili, S. (2021). An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection. Computers & Industrial Engineering, 153(January), 107078. https://doi.org/10.1016/j.cie.2020.107078
  • Abdollahzadeh, B., Barshandeh, S., Javadi, H., & Epicoco, N. (2021). An enhanced binary slime mould algorithm for solving the 0–1 knapsack problem. Engineering with Computers, 38(s4), 3423–3444. https://doi.org/10.1007/s00366-021-01470-z
  • Altabey, W. A., Noori, M., Wang, T., Ghiasi, R., Kuok, S.-C., & Wu, Z. (2021). Deep learning-based crack identification for steel pipelines by extracting features from 3d shadow modeling. Applied Sciences (Switzerland), 11(13), 6063. https://doi.org/10.3390/app11136063
  • Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2021). A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and deep learning applications. Mechanical Systems and Signal Processing, 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077
  • Awadallah, M. A., Al-Betar, M. A., Braik, M. S., Hammouri, A. I., Doush, I. A., & Zitar, R. A. (2022). An enhanced binary rat swarm optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Computers in Biology and Medicine, 147, 105675. https://doi.org/10.1016/j.compbiomed.2022.105675
  • Awadallah, M. A., Hammouri, A. I., Al-Betar, M. A., Braik, M. S., & Abd Elaziz, M. (2022). Binary Horse herd optimization algorithm with crossover operators for feature selection. Computers in Biology and Medicine, 141, 105152. https://doi.org/10.1016/j.compbiomed.2021.105152
  • Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications, 42(22), 8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007
  • Buckley, T., Ghosh, B., & Pakrashi, V. (2022). A feature extraction & selection benchmark for structural health monitoring. Structural Health Monitoring, 14. https://doi.org/10.1177/14759217221111141
  • Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79. https://doi.org/10.1016/j.neucom.2017.11.077
  • Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(1), 20–28.
  • Chuang, L.-Y., Yang, C.-H., & Li, J.-C. (2011). Chaotic maps based on binary particle swarm optimization for feature selection. Applied Soft Computing, 11(1), 239–248. https://doi.org/10.1016/j.asoc.2009.11.014
  • Colaco, S., Kumar, S., Tamang, A., & Biju, V. G. (2019). A review on feature selection algorithms. In N. Shetty, L. Patnaik, H. Nagaraj, P. Hamsavath, & N. Nalini (Eds.), Emerging Research in Computing, Information, Communication and Applications. Advances in Intelligent Systems and Computing (Vol. 906). Springer. https://doi.org/10.1007/978-981-13-6001-5_11.
  • Corbally, R., & Malekjafarian, A. (2022). A data-driven approach for drive-by damage detection in bridges considering the influence of temperature change. Engineering Structures, 253(December 2021), 113783. https://doi.org/10.1016/j.engstruct.2021.113783
  • Dadras Eslamlou, A., & Huang, S. (2022). Artificial-neural-network-based surrogate models for structural health monitoring of civil structures: A literature review. Buildings, 12(12), 2067. https://doi.org/10.3390/buildings12122067
  • Das, S., Saha, P., & Patro, S. K. (2016). Vibration-based damage detection techniques used for health monitoring of structures: A review. Journal of Civil Structural Health Monitoring, 6(3), 477–507. https://doi.org/10.1007/s13349-016-0168-5
  • Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’M, A.-Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge-Based Systems, 154, 43–67. https://doi.org/10.1016/j.knosys.2018.05.009
  • Fathnejat, H., Torkzadeh, P., Salajegheh, E., & Ghiasi, R. (2014). Structural damage detection by model updating method based on cascade feed-forward neural network as an efficient approximation mechanism. International Journal of Optimization in Civil Engineering, 4(4), 451–472. http://ijoce.iust.ac.ir/browse.php?a_code=A-10-66-43&slc_lang=en&sid=1
  • Figueiredo, E. (2007). Los Alamos National Laboratory dataset. https://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-data-sets-and-software.php
  • Figueiredo, E., & Flynn, E. (2009). Three-story building structure to detect nonlinear effects. Report SHMTools Data Description.
  • Figueiredo, E., Park, G., Farrar, C. R., Worden, K., & Figueiras, J. (2011). Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, 10(6), 559–572. https://doi.org/10.1177/1475921710388971
  • Gharehbaghi, V. R., Noroozinejad Farsangi, E., Noori, M., Yang, T. Y., Li, S., Nguyen, A., Málaga-Chuquitaype, C., Gardoni, P., & Mirjalili, S. (2021). A critical review on structural health monitoring: Definitions, methods, and perspectives. Archives of Computational Methods in Engineering, 1–27.
  • Ghiasi, R., & Ghasemi, M. R. (2018). An intelligent health monitoring method for processing data collected from the sensor network of structure. Steel and Composite Structures, 29(6), 703–716. https://doi.org/10.12989/scs.2018.29.6.703
  • Ghiasi, R., Ghasemi, M. R., & Chan, T. H. T. (2021). Optimum feature selection for SHM of benchmark structures using efficient AI mechanism. Smart Structures and Systems, 27(4), 623–640. https://doi.org/10.12989/sss.2021.27.4.623
  • Ghiasi, R., Ghasemi, M. R., & Noori, M. (2018). Comparative studies of metamodeling and AI-based techniques in damage detection of structures. Advances in Engineering Software, 125, 101–112. https://doi.org/10.1016/j.advengsoft.2018.02.006
  • Ghiasi, R., & Malekjafarian, A. (2022, August). An advanced binary slime mould algorithm for feature subset selection in structural health monitoring data. Civil Engineering Research in Ireland 2022 (CERI2022).
  • Ghiasi, R., Noori, M., Kuok, S.-C., Silik, A., Wang, T., Pozo, F., & Altabey, W. A. (2022). Structural assessment under uncertain parameters via the interval optimization method using the slime mold algorithm. Applied Sciences, 12(4), 1876. https://doi.org/10.3390/app12041876
  • Ghiasi, R., Torkzadeh, P., & Noori, M. (2016). A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. Structural Health Monitoring, 15(3), 302–316. https://doi.org/10.1177/1475921716639587
  • Gomes, G. F., Mendez, Y. A. D., Alexandrino, P. D. S. L., da Cunha, S. S., & Ancelotti, A. C. (2018). A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN. Archives of Computational Methods in Engineering, 26(4), 883–897. https://doi.org/10.1007/s11831-018-9273-4
  • He, Y., Huang, Z., Liu, D., Zhang, L., & Liu, Y. (2022). A novel structural damage identification method using a hybrid deep learning framework. Buildings, 12(12), 2130. https://doi.org/10.3390/buildings12122130
  • Kashef, S., & Nezamabadi-Pour, H. (2015). An advanced ACO algorithm for feature subset selection. Neurocomputing, 147, 271–279. https://doi.org/10.1016/j.neucom.2014.06.067
  • Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221–232. https://doi.org/10.1007/s13748-016-0094-0
  • Kullaa, J. (2011). Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring. Mechanical Systems and Signal Processing, 25(8), 2976–2989. https://doi.org/10.1016/j.ymssp.2011.05.017
  • Kullaa, J. (2013). Detection, identification, and quantification of sensor fault in a sensor network. Mechanical Systems and Signal Processing, 40(1), 208–221. https://doi.org/10.1016/j.ymssp.2013.05.007
  • Kullaa, J. (2018). Wooden bridge data. https://users.metropolia.fi/~kullj/JrkwXyZGkhc/
  • Li, S., Chen, H., Wang, M., Asghar, A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10.1016/j.future.2020.03.055
  • Lowe, D., & Broomhead, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2(3), 321–355. https://www.complex-systems.com/abstracts/v02_i03_a05/
  • Malan, N. S., & Sharma, S. (2019). Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Computers in Biology and Medicine, 107, 118–126. https://doi.org/10.1016/j.compbiomed.2019.02.009
  • Malekjafarian, A., Golpayegani, F., Moloney, C., & Clarke, S. (2019). A machine learning approach to bridge-damage detection using responses measured on a passing vehicle. Sensors, 19(4035), 4035. https://doi.org/10.3390/s19184035
  • Malekjafarian, A., OBrien, E. J., Quirke, P., Cantero, D., & Golpayegani, F. (2021). Railway track loss-of-stiffness detection using bogie filtered displacement data measured on a passing train. Infrastructures, 6(6), 93. https://doi.org/10.3390/infrastructures6060093
  • Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14. https://doi.org/10.1016/j.swevo.2012.09.002
  • Naseri, T. S., & Gharehchopogh, F. S. (2022). A feature selection based on the farmland fertility algorithm for improved intrusion detection systems. Journal of Network and Systems Management, 30(3), 40. https://doi.org/10.1007/s10922-022-09653-9
  • Paniri, M., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2021). Ant-TD: Ant colony optimization plus temporal difference reinforcement learning for multi-label feature selection. Swarm and Evolutionary Computation, 64, 100892. https://doi.org/10.1016/j.swevo.2021.100892
  • Pashaei, E., & Pashaei, E. (2021). Gene selection using hybrid dragonfly black hole algorithm: A case study on RNA-seq COVID-19 data. Analytical Biochemistry, 627, 114242. https://doi.org/10.1016/j.ab.2021.114242
  • Pashaei, E., & Pashaei, E. (2022a). An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Computing and Applications, 34(8), 6427–6451. https://doi.org/10.1007/s00521-021-06775-0
  • Pashaei, E., & Pashaei, E. (2022b). Hybrid binary arithmetic optimization algorithm with simulated annealing for feature selection in high ‑ dimensional biomedical data. The Journal of Supercomputing, 78(13), 15598–15637. https://doi.org/10.1007/s11227-022-04507-2
  • Pashaei, E., & Pashaei, E. (2023). Hybrid binary COOT algorithm with simulated annealing for feature selection in high-dimensional microarray data. Neural Computing and Applications, 35(1), 353–374. https://doi.org/10.1007/s00521-022-07780-7
  • Qi, A., Zhao, D., Yu, F., Heidari, A. A., Chen, H., & Xiao, L. (2022). Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9(2), 519–563. https://doi.org/10.1093/jcde/qwac014
  • Saidi, R., Bouaguel, W., & Essoussi, N. (2019). Hybrid feature selection method based on the genetic algorithm and pearson correlation coefficient. In A. Hassanien (Ed.), Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence (Vol. 801). Springer. https://doi.org/10.1007/978-3-030-02357-7_1
  • Santos, A., Figueiredo, E., Silva, M. F. M., Sales, C. S., & Costa, J. C. W. A. C. W. A. (2016). Machine learning algorithms for damage detection: Kernel-based approaches. Journal of Sound and Vibration, 363, 584–599. https://doi.org/10.1016/j.jsv.2015.11.008
  • Saremi, S., Mirjalili, S., & Lewis, A. (2015). How important is a transfer function in discrete heuristic algorithms. Neural Computing and Applications, 26(3), 625–640. https://doi.org/10.1007/s00521-014-1743-5
  • Silik, A., Noori, M., Altabey, W. A., Dang, J., Ghiasi, R., & Wu, Z. (2022). Optimum wavelet selection for nonparametric analysis toward structural health monitoring for processing big data from sensor network: A comparative study. Structural Health Monitoring, 21(3), 803–825. https://doi.org/10.1177/14759217211010261
  • Silik, A., Noori, M., Altabey, W. A., & Ghiasi, R. (2021). Selecting optimum levels of wavelet multi-resolution analysis for time-varying signals in structural health monitoring. Structural Control and Health Monitoring, 28(8). https://doi.org/10.1002/stc.2762
  • Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to genetic algorithms (pp. 15–37). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73190-0_2
  • Soleimani-Babakamali, M. H., Sepasdar, R., Nasrollahzadeh, K., Lourentzou, I., & Sarlo, R. (2022). Toward a general unsupervised novelty detection framework in structural health monitoring. Computer-Aided Civil and Infrastructure Engineering, 37(9), 1128–1145. https://doi.org/10.1111/mice.12812
  • Soleimanian, F., Alaettin, G., Turgay, U., Bahman, I., & Gultekin, A. (2023). Slime mould algorithm: A comprehensive survey of its variants and applications. Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-023-09883-3
  • Thaher, T., Heidari, A. A., Mafarja, M., Dong, J. S., & Mirjalili, S. (2020). Binary harris hawks optimizer for high-dimensional, low sample size feature selection. In S. Mirjalili, H. Faris, & I. Aljarah (Eds.), Evolutionary Machine Learning Techniques. Algorithms for Intelligent Systems. Springer. https://doi.org/10.1007/978-981-32-9990-0_12
  • Too, J., Abdullah, A. R., & Saad, N. M. (2019). A new quadratic binary harris hawk optimization for feature selection. Electronics, 8(10), 1–27. https://doi.org/10.3390/electronics8101130
  • Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics, 85, 189–203. https://doi.org/10.1016/j.jbi.2018.07.014
  • Varaee, H., & Ghasemi, M. R. (2017). Engineering optimization based on ideal gas molecular movement algorithm. Engineering with Computers, 33(1), 71–93. https://doi.org/10.1007/s00366-016-0457-y
  • Wu, Y., Wang, H., Zhang, B., & Du, K.-L. (2012). Using radial basis function networks for function approximation and classification. International Scholarly Research Notices, 2012, 1–34. https://doi.org/10.5402/2012/324194
  • Xue, Y., Tang, Y., Xu, X., Liang, J., & Neri, F. (2021). Multi-objective feature selection with missing data in classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(2), 355–364. https://doi.org/10.1109/TETCI.2021.3074147
  • Xue, Y., Xue, B., & Zhang, M. (2019). Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(5), 1–27. https://doi.org/10.1145/3340848
  • Zhao, Z., Anand, R., & Wang, M. (2019). Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 442–452). IEEE. https://doi.org/10.1109/DSAA.2019.00059