865
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Detecting changes in the structural behaviour of a laboratory bridge model using the contact-point response of a passing vehicle

&

References

  • Alampalli, S. (1998). Influence of in-service environment on modal parameters. Proceedings-SPIE the international society for optical engineering, 1, 111–116.
  • Axial-Racing. (2022). SCX10™ III JT Gladiator Jeep with Portals. Retrieved October 5, 2022, from https://www.axialadventure.com/product/1-10-scx10iii-jeep-jt-gladiator-with-portals-rtr/AXI03006B.html
  • Cebon, D. (1999). Handbook of vehicle-road interaction. Taylor & Francis. https://books.google.ie/books?id=UhhrQgAACAAJ
  • Cerda, F., Chen, S., Bielak, J., Garrett, J. H., Rizzo, P., & Kovacevic, J. (2014). Indirect structural health monitoring of a simplified laboratory-scale bridge model. Smart Structures and Systems, 13(5), 849–868. https://doi.org/10.12989/sss.2014.13.5.849
  • Chang, K. C., Wu, F. B., & Yang, Y. B. (2011). Disk model for wheels moving over highway bridges with rough surfaces. Journal of Sound and Vibration, 330(20), 4930–4944. https://doi.org/10.1016/j.jsv.2011.05.002
  • Clough, R. W., & Penzien, J. (2003). Dynamics of Structures: Third Edition. Computers & Structures Inc.
  • Corbally, R., & Malekjafarian, A. (2021). Examining changes in bridge frequency due to damage using the contact-point response of a passing vehicle. Journal of Structural Integrity & Maintenance, 6(3), 148–158. https://doi.org/10.1080/24705314.2021.1906088
  • Corbally, R., & Malekjafarian, A. (2022). A data-driven approach for drive-by damage detection in bridges considering the influence of temperature change. Engineering Structures, 253. https://doi.org/10.1016/j.engstruct.2021.113783
  • Fitzgerald, P. C., Malekjafarian, A., Cantero, D., Obrien, E. J., & Prendergast, L. J. (2019). Drive-by scour monitoring of railway bridges using a wavelet-based approach. Engineering Structures, 191, 1–11. https://doi.org/10.1016/j.engstruct.2019.04.046
  • Hashlamon, I., Nikbakht, E., Topa, A., & Elhattab, A. (2021). Numerical parametric study on the effectiveness of the contact-point response of a stationary vehicle for bridge health monitoring. Applied Sciences, 11(15), 7028. https://doi.org/10.3390/app11157028
  • ISO, I. (2016). ISO 8608 mechanical vibration–road surface profiles–reporting of measured data. BSI Standards Publication.
  • Jazar, N. R. (2008). Vehicle dynamics, theory and application. Springer. https://doi.org/10.1007/978-0-387-74244-1
  • Keenahan, J., OBrien, E. J., McGetrick, P. J., & Gonzalez, A. (2014). The use of a dynamic truck–trailer drive-by system to monitor bridge damping. Structural Health Monitoring: An International Journal, 13(2), 143–157. https://doi.org/10.1177/1475921713513974
  • Locke, W., Sybrandt, J., Redmond, L., Safro, I., & Atamturktur, S. (2020). Using drive-by health monitoring to detect bridge damage considering environmental and operational effects. Journal of Sound and Vibration, 468. https://doi.org/10.1016/j.jsv.2019.115088
  • Malekjafarian, A., Corbally, R., & Gong, W. (2022). A review of mobile sensing of bridges using moving vehicles: Progress to date, challenges and future trends. Structures, 44, 1466–1489. https://doi.org/10.1016/j.istruc.2022.08.075
  • Malekjafarian, A., Golpayegani, F., Moloney, C., & Clarke, S. (2019). A machine learning approach to bridge-damage detection using responses measured on a passing vehicle. Sensors, 19(18), 19. https://doi.org/10.3390/s19184035
  • Malekjafarian, A., Martinez, D., & OBrien, E. J. (2018). The feasibility of using laser doppler vibrometer measurements from a passing vehicle for bridge damage detection. Shock and Vibration, 2018, 1–10. https://doi.org/10.1155/2018/9385171
  • Malekjafarian, A., & OBrien, E. J. (2014). Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle. Engineering Structures, 81, 386–397. https://doi.org/10.1016/j.engstruct.2014.10.007
  • McGetrick, P. J., Hester, D., & Taylor, S. E. (2017). Implementation of a drive-by monitoring system for transport infrastructure utilising smartphone technology and GNSS. Journal of Civil Structural Health Monitoring, 7(2), 175–189. https://doi.org/10.1007/s13349-017-0218-7
  • McGetrick, P. J., & Kim, C. W. (2013). A parametric study of a drive by bridge inspection system based on the morlet wavelet. Key Engineering Materials, 569-570, 262–269. https://doi.org/10.4028/www.scientific.net/KEM.569-570.262
  • McGetrick, P. J., Kim, C.-W., González, A., & Brien, E. J. O. (2015). Experimental validation of a drive-by stiffness identification method for bridge monitoring. Structural Health Monitoring: An International Journal, 14(4), 317–331. https://doi.org/10.1177/1475921715578314
  • McGetrick, P. J., Kim, C.-W., Gonzalez, A., & OBrien, E. J. (2013). Dynamic axle force and road profile identification using a moving vehicle. International Journal of Architecture, Engineering and Construction, 2(1), 1–16. https://doi.org/10.7492/ijaec.2013.001
  • Mei, Q., & Gül, M. (2019). A crowdsourcing-based methodology using smartphones for bridge health monitoring. Structural Health Monitoring, 18(5–6), 1602–1619. https://doi.org/10.1177/1475921718815457
  • Nayek, R., & Narasimhan, S. (2020). Extraction of contact-point response in indirect bridge health monitoring using an input estimation approach. Journal of Civil Structural Health Monitoring, 10(5), 815–831. https://doi.org/10.1007/s13349-020-00418-z
  • Peeters, B., & De Roeck, G. (2001). One‐year monitoring of the Z24‐Bridge: Environmental effects versus damage events. Earthquake Engineering & Structural Dynamics, 30(2), 149–171.
  • Ramu, M., Prabhu Raja, V., & Thyla, P. R. (2013). Establishment of structural similitude for elastic models and validation of scaling laws. KSCE Journal of Civil Engineering, 17(1), 139–144. https://doi.org/10.1007/s12205-013-1216-x
  • Sarwar, M. Z., & Cantero, D. (2021). Deep autoencoder architecture for bridge damage assessment using responses from several vehicles. Engineering Structures, 246, 113064. https://doi.org/10.1016/j.engstruct.2021.113064
  • Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Rahimian Koloor, S. S., & Petru, M. (2020). Vehicle-assisted techniques for health monitoring of bridges. Sensors, 20(12), 3460. https://doi.org/10.3390/s20123460
  • Sitton, J. D., Zeinali, Y., Rajan, D., & Story, B. A. (2020). Frequency estimation on two-span continuous bridges using dynamic responses of passing vehicles. Journal of Engineering Mechanics, 146(1). https://doi.org/10.1061/(asce)em.1943-7889.0001698
  • Wang, Z., Yang, J. P., Shi, K., Xu, H., Qiu, F., & Yang, Y. B. (2022). Recent advances in researches on vehicle scanning method for bridges. International Journal of Structural Stability and Dynamics, 22(15). https://doi.org/10.1142/S0219455422300051
  • Xu, H., Huang, C. C., Wang, Z. L., Shi, K., Wu, Y. T., & Yang, Y. B. (2021). Damped test vehicle for scanning bridge frequencies: Theory, simulation and experiment. Journal of Sound and Vibration, 506. https://doi.org/10.1016/j.jsv.2021.116155
  • Yang, Y., Tan, X., Lu, H., Xue, S., Wang, R., & Zhang, Y. (2022). Indirect approach to identify girder bridge element stiffness based on blind source separation. Symmetry, 14(10), 1963. https://doi.org/10.3390/sym14101963
  • Yang, Y. B., Lin, C. W., & Yau, J. D. (2004). Extracting bridge frequencies from the dynamic response of a passing vehicle. Journal of Sound and Vibration, 272(3–5), 471–493. https://doi.org/10.1016/s0022-460x0300378-x
  • Yang, Y. B., Xu, H., Mo, X. Q., Wang, Z. L., & Wu, Y. T. (2021). An effective procedure for extracting the first few bridge frequencies from a test vehicle. Acta Mechanica, 232(3), 1227–1251. https://doi.org/10.1007/s00707-020-02870-w
  • Yang, Y. B., Xu, H., Zhang, B., Xiong, F., & Wang, Z. L. (2020). Measuring bridge frequencies by a test vehicle in non-moving and moving states. Engineering Structures, 203, 109859. https://doi.org/10.1016/j.engstruct.2019.109859
  • Zhan, Y., & Au, F. (2019). A double-pass method for bridge assessment considering surface roughness using normalized contact point responses. Smart Monitoring, Assessment and Rehabilitation of Civil Structures.