152
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Diagnosis of durability-related problems in concrete structures through comprehensive analysis and non-destructive testing: a case study

, , &

References

  • Aci 201. (2008). 201.2R-08 guide to durable concrete.
  • ACI 318. (2019). An ACI standard.
  • Ahlström, J., Tidblad, J., Sederholm, B., & Wadsö, L. (2016). Influence of chloride and moisture content on steel rebar corrosion in concrete. Materials and Corrosion, 67(10), 1049–1058. https://doi.org/10.1002/maco.201508799
  • Ahsan, M. H., Siddique, M. S., Farooq, S. H., Usman, M., Ul Aleem, M. A., Hussain, M., & Hanif, A. (2022). Mechanical behavior of high-strength concrete incorporating seashell powder at elevated temperatures. Journal of Building Engineering, 50, 104226. https://doi.org/10.1016/j.jobe.2022.104226
  • Al-Jabari, M. (2022). 3 - Concrete durability problems: Physicochemical and transport mechanisms. In M.B.T.-I.W. of C.S. Al-Jabari (Ed.), Woodhead publishing series in civil and structural engineering (pp. 69–107). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-824354-1.00003-9
  • Altmann, F., & Mechtcherine, V. (2013). Durability design strategies for new cementitious materials. Cement and Concrete Research, 54, 114–125. https://doi.org/10.1016/j.cemconres.2013.08.008
  • Aseem, A., Latif Baloch, W., Khushnood, R. A., & Mushtaq, A. (2019). Structural health assessment of fire damaged building using non-destructive testing and micro-graphical forensic analysis: A case study. Case Studies in Construction Materials, 11, e00258. https://doi.org/10.1016/j.cscm.2019.e00258
  • Bamforth, P. B., Price, W. F., Emerson, M. (1997). International review of chloride ingress into structural concrete: A trl report (Trl 359).
  • Beddoe, R. E., Müllauer, W., & Heinz, D. (2022). On leaching mechanisms of major and trace elements from concrete - Carbonation, exposure to deicing salt and external sulphates. Journal of Building Engineering, 45, 103435. https://doi.org/10.1016/j.jobe.2021.103435
  • Bertelsen, I. M. G., Belmonte, L. J., Fischer, G., & Ottosen, L. M. (2021). Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials. Construction and Building Materials, 286, 122738. https://doi.org/10.1016/j.conbuildmat.2021.122738
  • Bhunia, D., Singh, S., Imam, A. (2013). A Study on Effect of Carbonation on the Properties of Concrete.
  • Chaudhry, M. N., Baloch, I. H., Ahsan, N., & Majid, C. M. (1999). Engineering properties, mineralogy, alkali aggregate reaction potential and provenance of Lawrencepur sand Pakistan. Special Issue Pakistan Museum of Natural History, 241–254.
  • Collepardi, M. (2003). A state-of-the-art review on delayed ettringite attack on concrete. Cement and Concrete Composites, 25(4–5), 401–407. https://doi.org/10.1016/S0958-9465(02)00080-X
  • Fiorio, B. (2005). Wear characterisation and degradation mechanisms of a concrete surface under ice friction. Construction and Building Materials, 19(5), 366–375. https://doi.org/10.1016/j.conbuildmat.2004.07.020
  • Fu, W., Sun, B., Wan, H., Luo, Y., & Zhao, W. (2022). A Gaussian processes-based approach for damage detection of concrete structure using temperature-induced strain. Engineering Structures, 268, 114740. https://doi.org/10.1016/j.engstruct.2022.114740
  • Furtado, A., Vila-Pouca, N., Varum, H., & Arêde, A. (2019). Study of the seismic response on the infill masonry walls of a 15-storey reinforced concrete structure in Nepal. Buildings, 9(2), 39. https://doi.org/10.3390/buildings9020039
  • Gjørv, O. (2011). Durability of concrete structures, Arab. Arabian Journal for Science and Engineering, 36(2), 151–172. https://doi.org/10.1007/s13369-010-0033-5
  • Gleick, P. H. (2018). The world’s water.
  • Hanif, A., & Usman, M. (2022). Fly ash cenosphere: Characterization, processing, and properties. In K. K. Kar (Ed.), Handbook of fly ash (1st ed., pp. 57–75). Elsevier. https://doi.org/10.1016/B978-0-12-817686-3.00018-9
  • Haynes, H., O’Neill, R., Neff, M., & Kumar Mehta, P. (2010). Salt weathering of concrete by sodium carbonate and sodium chloride. ACI Materials Journal, 107, 258–266. https://doi.org/10.14359/51663754
  • Haynes, H., O’Neill, R., Neff, M., & Kumar Mehta, R. (2008). Salt weathering distress on concrete exposed to sodium sulfate environment. ACI Materials Journal, 105, 35–43. https://doi.org/10.14359/19205
  • Helmuth, R., Stark, D., Diamond, S., & Moranville-Regourd, M. (1993). Alkali-silica reactivity: An overview of research. Concrete, 108. http://onlinepubs.trb.org/onlinepubs/shrp/SHRP-C-342.pdf
  • Hime, W. G., Tracy, S., & Connolly, J. (2004). A state-of-the-art review of delayed ettringite attack on concrete by Mario Collepardi [cement & concrete composites 25 (2003) 401–407]. Cement and Concrete Composites, 26(6), 753. https://doi.org/10.1016/j.cemconcomp.2004.02.023
  • Ideker, J. H., Folliard, K. J., Thomas, M. D. A., Fournier, B., & Kurtis, K. E. (2007). The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures. Federal Highway Administration, 47. https://rosap.ntl.bts.gov/view/dot/774
  • Jamil, N., Ahsan, N., & Shafique, U. (2012). Lawrencepur sand- a highly efficient adsorbent for the removal of Cr (VI) from waste water. Journal of the Chemical Society of Pakistan, 34, 81–88. https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A283881405&v=2.1&it=r&asid=e85937b8
  • Kanellopoulos, A. (2021). Concrete deterioration: Physical and chemical mechanisms.
  • Kawamura, M., & Iwahori, K. (2004a). ASR gel composition and expansive pressure in mortars under restrained conditions. Cement and Concrete Composites, 26(1), 47–56. https://doi.org/10.1016/S0958-9465(02)00135-X/
  • Kawamura, M., & Iwahori, K. (2004b). ASR gel composition and expansive pressure in mortars under restraint. Cement and Concrete Composites, 26(1), 47–56. https://doi.org/10.1016/S0958-9465(02)00135-X
  • Khan, A.-R., Zafar, N. (2009). Performance of different types of Pakistani cements exposed to aggressive environments.
  • Khan, M. I., Shah, M. U., & Usman, M. (2022). Experimental investigation of concrete properties using locally available coarse aggregates in Punjab, Pakistan. NUST Journal of Engineering Sciences, 15(1), 26–29. https://doi.org/10.24949/njes.v15i1.655
  • Kim, S., Kim, Y., Usman, M., Park, C., & Hanif, A. (2021). Durability of slag waste incorporated steel fiber-reinforced concrete in marine environment. Journal of Building Engineering, 33, 101641. https://doi.org/10.1016/j.jobe.2020.101641
  • Kumar, S., Gupta, R. C., & Shrivastava, S. (2016). Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates. Construction and Building Materials, 125, 884–891. https://doi.org/10.1016/j.conbuildmat.2016.08.106
  • Kumavat, H. R., Chandak, N. R., & Patil, I. T. (2021). Factors influencing the performance of rebound hammer used for non-destructive testing of concrete members: A review. Case Studies in Construction Materials, 14, e00491. https://doi.org/10.1016/j.cscm.2021.e00491
  • Li, Z. (2011). Introduction to concrete. In Advanced concrete technology (pp. 1–22). Wiley. https://doi.org/10.1002/9780470950067.ch1
  • Liu, Z., Deng, D., De Schutter, G., & Yu, Z. (2011). Micro-analysis of “salt weathering” on cement paste. Cement and Concrete Composites, 33(2), 179–191. https://doi.org/10.1016/j.cemconcomp.2010.10.010
  • Lollini, F., & Redaelli, E. (2021). Carbonation of blended cement concretes after 12 years of natural exposure. Construction and Building Materials, 276, 122122. https://doi.org/10.1016/j.conbuildmat.2020.122122
  • Lu, C., Bu, S., Zheng, Y., & Kosa, K. (2022). Deterioration of concrete mechanical properties and fracture of steel bars caused by alkali-silica reaction: A review. Structures, 35, 893–902. https://doi.org/10.1016/j.istruc.2021.11.051
  • Mansfeld, T. (2009). Das Quellverhalten von Alkalisilikatgelen unter Beachtung ihrer Zusammensetzung.
  • Marzouki, A., Lecomte, A., Beddey, A., Diliberto, C., & Ben Ouezdou, M. (2013). The effects of grinding on the properties of Portland-limestone cement. Construction and Building Materials, 48, 1145–1155. https://doi.org/10.1016/j.conbuildmat.2013.07.053
  • Metha, P., & Monteiro, P. (n.d.). Concrete microstructures properties, and materials, Third.
  • Mindess, S. (2019). Introduction. In Developments in the Formulation and Reinforcement of Concrete ( pp. xvii–xviii). https://doi.org/10.1016/B978-0-08-102616-8.00022-8
  • Mohammadi, A., Ghiasvand, E., & Nili, M. (2020). Relation between mechanical properties of concrete and alkali-silica reaction (ASR); a review. Construction and Building Materials, 258, 119567. https://doi.org/10.1016/j.conbuildmat.2020.119567
  • Momber, A. W. (2000). Short-time cavitation erosion of concrete. Wear, 241(1), 47–52. https://doi.org/10.1016/S0043-1648(00)00348-3
  • Munir, M. J., Kazmi, S. M. S., Wu, Y.-F., & Patnaikuni, I. (2018). A literature review on alkali silica reactivity of concrete. International Journal of Strategic Engineering, 1(2), 43–62. https://doi.org/10.4018/ijose.2018070104
  • Nadelman, E. I., & Kurtis, K. E. (2019). Durability of Portland-limestone cement-based materials to physical salt attack. Cement and Concrete Research, 125, 105859. https://doi.org/10.1016/j.cemconres.2019.105859
  • Naeem, M., Khalid, P., Sanaullah, M., & Din, Z. U. (2014). Physio-mechanical and aggregate properties of limestones from Pakistan. Acta Geodaetica et Geophysica, 49(3), 369–380. https://doi.org/10.1007/s40328-014-0054-8
  • Neumann, C., Faria, E. F., & dos Santos, A. C. P. (2021). Concrete leaching of a hydroelectric powerhouse due to 40 years of exposure to river water. Construction and Building Materials, 302, 124253. https://doi.org/10.1016/j.conbuildmat.2021.124253
  • Pascual, C., Criado, E., Recio, P., Martinez, R., De Aza, A. H., Valle, F. J., & Mañueco, C. (2011). La porcelana de sepiolita de Bartolomé Sureda (1802-1808). Investigación arqueométrica sobre la Real Fábrica de Buen Retiro. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(6), 311–328. https://doi.org/10.3989/cyv.402011
  • PCA. (2002). Types and causes of concrete deterioration.
  • Penttala, V. (2009). 1 - Causes and mechanisms of deterioration in reinforced concrete. In N.B.T.-F. Delatte Distress and Repair of Concrete Structures (Ed.), Woodhead publishing series in civil and structural engineering (pp. 3–31). Woodhead Publishing. https://doi.org/10.1533/9781845697037.1.3
  • Rahman, M. M., & Bassuoni, M. T. (2014). Thaumasite sulfate attack on concrete: Mechanisms, influential factors and mitigation. Construction and Building Materials, 73, 652–662. https://doi.org/10.1016/j.conbuildmat.2014.09.034
  • Rizwan, S. A., Toor, S. R., & Ahmad, H. (2005). Using locally available fly ash for modifying concrete properties, Pakistan engineering congress. Gulberg-III.
  • Saha, A. S., & Amanat, K. M. (2021). Rebound hammer test to predict in-situ strength of concrete using recycled concrete aggregates, brick chips and stone chips. Construction and Building Materials, 268, 121088. https://doi.org/10.1016/j.conbuildmat.2020.121088
  • Sahama, T. G., & Hytönen, K. (1959). Delhayelite, a new silicate from the Belgian Congo. Mineralogical Magazine and Journal of the Mineralogical Society, 32(244), 6–9. https://doi.org/10.1180/minmag.1959.032.244.02
  • Saidmurodov, S. S., Jacobsen, S., Hendriks, M. A. N., & Shamsutdinova, G. (2022). An evaluation of the ice melting during concrete-ice abrasion experiment. Case Studies in Thermal Engineering, 35, 102088. https://doi.org/10.1016/j.csite.2022.102088
  • Sakr, M. R., & Bassuoni, M. T. (2021). Performance of concrete under accelerated physical salt attack and carbonation. Cement and Concrete Research, 141, 106324. https://doi.org/10.1016/j.cemconres.2020.106324
  • Shah, M. U., Usman, M., Hanif, M. U., Naseem, I., & Farooq, S. (2021). Utilization of solid waste from brick industry and hydrated lime in self-compacting cement pastes. Materials (Basel), 14(5), 1109–1123. https://doi.org/10.3390/ma14051109
  • Sharif, B., Firdous, R., & Tahir, M. (2016). Development of local bagasse ash as pozzolanic material for use in concrete. Pakistan Journal of Engineering and Applied Sciences 17, 39–45. https://journal.uet.edu.pk/ojs_old/index.php/pjeas/article/view/68
  • Sika, F., Sika, T. O. (n.d.). Concrete more than 100 years of durability.
  • Tang, S. W., Yao, Y., Andrade, C., & Li, Z. J. (2015). Recent durability studies on concrete structure. Cement and Concrete Research, 78, 143–154. https://doi.org/10.1016/j.cemconres.2015.05.021
  • Thaulow, N., & Sahu, S. (2004). Mechanism of concrete deterioration due to salt crystallization. Materials Characterization, 53(2–4), 123–127. https://doi.org/10.1016/j.matchar.2004.08.013
  • Thomas, M., Folliard, K., Drimalas, T., & Ramlochan, T. (2008). Diagnosing delayed ettringite formation in concrete structures. Cement and Concrete Research, 38(6), 841–847. https://doi.org/10.1016/j.cemconres.2008.01.003
  • Usman, M., Khan, A. Y., Farooq, S. H., Hanif, A., Tang, S., Khushnood, R. A., & Rizwan, S. A. (2018). Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. Journal of Cleaner Production, 190, 679–688. https://doi.org/10.1016/j.jclepro.2018.04.186
  • Wang, D., Noguchi, T., & Nozaki, T. (2019). Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. Journal of Cleaner Production, 238, 117980. https://doi.org/10.1016/j.jclepro.2019.117980
  • Wang, D., Noguchi, T., Nozaki, T., & Higo, Y. (2021). Investigation of the carbonation performance of cement-based materials under high temperatures. Construction and Building Materials, 272, 121634. https://doi.org/10.1016/j.conbuildmat.2020.121634
  • Wang, D., Xiao, J., & Duan, Z. (2022). Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects. Construction and Building Materials, 314, 125646. https://doi.org/10.1016/j.conbuildmat.2021.125646
  • Werner, D., Gardei, A., Simon, S., & Meng, B. (2015). Microscopic investigation of building materials affected by alkali-silica reaction. 15th Euroseminar on Microscopy Applied to Building Materials (pp. 183–190). Delft, The Netherlands. https://www.deadcitycycles.com/sebastian-simon/publications/2015_Werner%20et%20al._Microscopic%20investigation%20of%20building%20materials%20affected%20by%20alkali-silica%20reaction.pdf
  • Winnefeld, F., Leemann, A., German, A., & Lothenbach, B. (2022). CO2 storage in cement and concrete by mineral carbonation. Current Opinion in Green and Sustainable Chemistry, 38, 100672. https://doi.org/10.1016/j.cogsc.2022.100672
  • Wu, M., Wang, T., Wu, K., & Kan, L. (2020). Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Construction and Building Materials, 239, 117813. https://doi.org/10.1016/j.conbuildmat.2019.117813

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.